767 resultados para sensor interfaces
Resumo:
Vanadium pentoxide xerogels (VXG) incorporating meso(3- and 4-pyridyl)porphyrin cobalt(III) species coordinated to four [Ru(bipy)(2)Cl](+) complexes were employed as gas sensing materials capable of detecting small amounts of water in commercial ethanol and fuel supplies. According to their X-ray diffraction data, the original VXG lamellar framework was maintained in the nanocomposite material, but the interlamellar distance increased from 11.7 to 15.2 angstrom, reflecting the intercalation of the porphyrin species into the vanadium pentoxide matrix. The films generated by direct deposition of the nanocomposite aqueous suspensions exhibited good electrical and electrochemical performance for application in resistive sensors. The analysis of water in ethanol and fuels was carried out successfully using an especially designed electric setup incorporating a laminar gas flow chamber and interdigitated gold electrodes coated with the nanocomposites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Agricultural techniques have been improved over the centuries to match with the growing demand of an increase in global population. Farming applications are facing new challenges to satisfy global needs and the recent technology advancements in terms of robotic platforms can be exploited. As the orchard management is one of the most challenging applications because of its tree structure and the required interaction with the environment, it was targeted also by the University of Bologna research group to provide a customized solution addressing new concept for agricultural vehicles. The result of this research has blossomed into a new lightweight tracked vehicle capable of performing autonomous navigation both in the open-filed scenario and while travelling inside orchards for what has been called in-row navigation. The mechanical design concept, together with customized software implementation has been detailed to highlight the strengths of the platform and some further improvements envisioned to improve the overall performances. Static stability testing has proved that the vehicle can withstand steep slopes scenarios. Some improvements have also been investigated to refine the estimation of the slippage that occurs during turning maneuvers and that is typical of skid-steering tracked vehicles. The software architecture has been implemented using the Robot Operating System (ROS) framework, so to exploit community available packages related to common and basic functions, such as sensor interfaces, while allowing dedicated custom implementation of the navigation algorithm developed. Real-world testing inside the university’s experimental orchards have proven the robustness and stability of the solution with more than 800 hours of fieldwork. The vehicle has also enabled a wide range of autonomous tasks such as spraying, mowing, and on-the-field data collection capabilities. The latter can be exploited to automatically estimate relevant orchard properties such as fruit counting and sizing, canopy properties estimation, and autonomous fruit harvesting with post-harvesting estimations.
Resumo:
Facilitating general access to data from sensor networks (including traffic, hydrology and other domains) increases their utility. In this paper we argue that the journalistic metaphor can be effectively used to automatically generate multimedia presentations that help non-expert users analyze and understand sensor data. The journalistic layout and style are familiar to most users. Furthermore, the journalistic approach of ordering information from most general to most specific helps users obtain a high-level understanding while providing them the freedom to choose the depth of analysis to which they want to go. We describe the general characteristics and architectural requirements for an interactive intelligent user interface for exploring sensor data that uses the journalistic metaphor. We also describe our experience in developing this interface in real-world domains (e.g., hydrology).
Resumo:
This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor Web
Resumo:
En este proyecto, se presenta un informe técnico sobre la cámara Leap Motion y el Software Development Kit correspondiente, el cual es un dispositivo con una cámara de profundidad orientada a interfaces hombre-máquina. Esto es realizado con el propósito de desarrollar una interfaz hombre-máquina basada en un sistema de reconocimiento de gestos de manos. Después de un exhaustivo estudio de la cámara Leap Motion, se han realizado diversos programas de ejemplo con la intención de verificar las capacidades descritas en el informe técnico, poniendo a prueba la Application Programming Interface y evaluando la precisión de las diferentes medidas obtenidas sobre los datos de la cámara. Finalmente, se desarrolla un prototipo de un sistema de reconocimiento de gestos. Los datos sobre la posición y orientación de la punta de los dedos obtenidos de la Leap Motion son usados para describir un gesto mediante un vector descriptor, el cual es enviado a una Máquina Vectores Soporte, utilizada como clasificador multi-clase.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers ( when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.
Resumo:
Four perylene derivatives (PTCD) have been used as transducing materials in taste sensors fabricated with nanostructured Langmuir-Blodgett (LB) films deposited onto interdigitated gold electrodes. The Langmuir monolayers of PTCDs display considerable collapse pressures, with areas per molecule indicative of an edge-on or head-on arrangement for the molecules at the air/water interface. The sensing units for the electronic tongue were produced from 5-layer LB films of the four PTCDs, whose electrical response was characterized with impedance spectroscopy. The distinct responses of the PTCDs, attributed to differences in their molecular structures, allowed one to obtain a finger printing system that was able to distinguish tastes (salty, sweet, bitter and sour) at 1 μM concentrations, which, in some cases, are three orders of magnitude below the human threshold. Using Principal Component Analysis (PCA) data analysis, the electronic tongue also detected trace amounts of a pesticide and could distinguish among samples of ultrapure, distilled and tap water, and two brands of mineral water. © 2004 by American Scientific Publishers. All rights reserved.
Resumo:
This paper presents a NCAP embedded on DE2 kit with Nios II processor and uClinux to development of a network gateway with two interfaces, wireless (ZigBee) and wired (RS232) based on IEEE 1451. Both the communications, wireless and wired, were developed to be point-to-point and working with the same protocols, based on IEEE 1451.0-2007. The tests were made using a microcomputer, which through of browser was possible access the web page stored in the DE2 kit and send commands of control and monitoring to both TIMs (WTIM and STIM). The system describes a different form of development of the NCAP node to be applied in different environments with wired or wireless in the same node. © 2011 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.
Resumo:
The majority of sensor network research deals with land-based networks, which are essentially two-dimensional, and thus the majority of simulation and animation tools also only handle such networks. Underwater sensor networks on the other hand, are essentially 3D networks because the depth at which a sensor node is located needs to be considered as well. Due to that additional dimension, specialized tools need to be used when conducting simulations for experimentation. The School of Engineering’s Underwater Sensor Network (UWSN) lab is conducting research on underwater sensor networks and requires simulation tools for 3D networks. The lab has extended NS-2, a widely used network simulator, so that it can simulate three-dimensional networks. However, NAM, a widely used network animator, currently only supports two-dimensional networks and no extensions have been implemented to give it three-dimensional capabilities. In this project, we develop a network visualization tool that functions similarly to NAM but is able to render network environments in full 3-D. It is able to take as input a NS-2 trace file (the same file taken as input by NAM), create the environment, position the sensor nodes, and animate the events of the simulation. Further, the visualization tool is easy to use, especially friendly to NAM users, as it is designed to follow the interfaces and functions similar to NAM. So far, the development has fulfilled the basic functionality. Future work includes fully functional capabilities for visualization and much improved user interfaces.
Resumo:
Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound
Resumo:
This paper presents a communication interface between supervisory low-cost mobile robots and domestic Wireless Sensor Network (WSN) based on the Zig Bee protocol from different manufacturers. The communication interface allows control and communication with other network devices using the same protocol. The robot can receive information from sensor devices (temperature, humidity, luminosity) and send commands to actuator devices (lights, shutters, thermostats) from different manufacturers. The architecture of the system, the interfaces and devices needed to establish the communication are described in the paper.