988 resultados para semi-parabolic quantum well
Resumo:
In this work, doped AlGaAs/GaAs parabolic quantum wells (PQW) with different well widths (from 1000 angstrom up to 3000 angstrom) were investigated by means of photoluminescence (PL) measurements. In order to achieve the 2DEG inside the PQW Si delta doping is placed at both side of the well. We have observed that the thickness of this space layer plays a major rule on the characteristics of the 2DEG. It has to be thicker enough to prevent any diffusions of Si to the well and thin enough to allow electrons migration inside the well. From PL measurement, we have observed beside the intra well transitions, indirect transitions involving still trapped electron on the delta doping and holes inside the PQW. For the thinness sample, we have measured a well defined PL peak at low energy side of the GaAs bulk emission. With the increasing of the well thickness this peak intensity decreases and for the thickest sample it almost disappears. Our theoretical calculation indicated that carriers (electron and holes) are more placed at the center of the PQW. In this way, when the well thickness increases the distance between electrons on the delta doping and holes on the well also increases, it decreases the probability of occurrence of these indirect optical transitions. (C) 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Universidade Federal de Juiz de Fora, Brazil.
Resumo:
This work is intended to report on optical measurements in a parabolic quantum well with a two dimensional-three dimensional electron gas. Photoluminescence results show broad spectra which are related to emission involving several subbands on conduction band with the fundamental level of the valence band. This assumption is based on the behavior of the PL peak position and the full width at half maximum in the function of the incident power intensity. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We study a Al(x)Ga(x-1)As parabolic quantum well (PQW) with GaAs/Al(x)Ga(x-1)As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor v approximate to 3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.
Resumo:
Parabolic quantum wells (PQWs) have been studied by temperature dependent photoluminescence (PL). Two kind of samples have been studied. Concerning the undoped sample, the dominant luminescences were the bulk GaAs and the fundamental transition of the PQW. The evolution on temperature of the energy position of both PL emissions follows the well known Varshing formula. For the doped samples strong radiative recombination of the electron gas with photogenerated holes was observed. At low temperature strong Fermi level enhancement occurs in the luminescence as a result of the multi-electron-hole scattering, which is smear out increasing the temperature.
Resumo:
The magnetic-field and confinement effects on the Land, factor in AlxGa1-xAs parabolic quantum wells under magnetic fields applied parallel or perpendicular to the growth direction are theoretically studied. Calculations are performed in the limit of low temperatures and low electron density in the heterostructure. The g factor is obtained by taking into account the effects of non-parabolicity and anisotropy of the conduction band through the 2 x 2 Ogg-McCombe Hamiltonian, and by including the cubic Dresselhaus spin-orbit term. A simple formula describing the magnetic-field dependence of the effective Land, factor is analytically derived by using the Rayleigh-Schrodinger perturbation theory, and it is found in good agreement with previous experimental studies devoted to understand the behavior of the g factor, as a function of an applied magnetic field, in semiconductor heterostructures. Present numerical results for the effective Land, factor are shown as functions of the quantum-well parameters and magnetic-field strength, and compared with available experimental measurements.
Resumo:
The anisotropy of the effective Lande factor in Al(x)Gal(1-x)As parabolic quantum wells under magnetic fields is theoretically investigated. The non-parabolicity and anisotropy of the conduction band are taken into account through the Ogg-McCombe Hamiltonian together with the cubic Dresselhaus spin-orbit term. The calculated effective g factor is larger when the magnetic field is applied along the growth direction. As the well widens, its anisotropy increases sharply and then decreases slowly. For the considered field strengths, the anisotropy is maximum for a well width similar to 50 angstrom. Moreover, this anisotropy increases with the field strength and the maximum value of the aluminum concentration within the quantum well. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 and 3000 ) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs. © 2010 IOP Publishing Ltd.
Resumo:
Optical properties of intentionally disordered multiple quantum well (QW) system embedded in a wide AlGaAs parabolic well were investigated by photoluminescence (PL) measurements as functions of the laser excitation power and the temperature. The characterization of the carriers localized in the individual wells was allowed due to the artificial disorder that caused spectral separation of the photoluminescence lines emitted by different wells. We observed that the photoluminescence peak intensity from each quantum well shifted to high energy as the excitation power was increased. This blue-shift is associated with the filling of localized states in the valence band tail. We also found that the dependence of the peak intensity on the temperature is very sensitive to the excitation power. The temperature dependence of the photoluminescence peak energy from each QW was well fitted using a model that takes into account the thermal redistribution of the localized carriers. Our results demonstrate that the band tails in the studied structures are caused by alloy potential fluctuations and the band tail states dominate the emission from the peripheral wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730769]
Resumo:
The energy spectrum of an electron confined in a quantum dot (QD) with a three-dimensional anisotropic parabolic potential in a tilted magnetic field was found analytically. The theory describes exactly the mixing of in-plane and out-of-plane motions of an electron caused by a tilted magnetic field, which could be seen, for example, in the level anticrossing. For charged QDs in a tilted magnetic field we predict three strong resonant lines in the far-infrared-absorption spectra.
Resumo:
The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.
Resumo:
In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.
Resumo:
This Master's thesis is devoted to semiconductor samples study using time-resolved photoluminescence. This method allows investigating recombination in semiconductor samples in order to develop quality of optoelectronic device. An additional goal was the method accommodation for low-energy-gap materials. The first chapter gives a brief intercourse into the basis of semiconductor physics. The key features of the investigated structures are noted. The usage area of the results covers saturable semiconductor absorber mirrors, disk lasers and vertical-external-cavity surface-emittinglasers. The experiment set-up is described in the second chapter. It is based on up-conversion procedure using a nonlinear crystal and involving the photoluminescent emission and the gate pulses. The limitation of the method was estimated. The first series of studied samples were grown at various temperatures and they suffered rapid thermal annealing. Further, a latticematched and metamorphically grown samples were compared. Time-resolved photoluminescence method was adapted for wavelengths up to 1.5 µm. The results allowed to specify the optimal substrate temperature for MBE process. It was found that the lattice-matched sample and the metamorphically grown sample had similar characteristics.
Resumo:
The operation of a previously proposed terahertz (THZ) detector is formulated in detail. The detector is based on the hot-electron effect of the 2D electron gas (2DEG) in the quantum well (QW) of a GaAs/AIGaAs heterostructure. The interaction between the THz radiation and the 2DEG, the current enhancement due to hot -electron effect, and the noise performance of the detector are analyzed
Resumo:
This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.