993 resultados para selective hydrogenation
Resumo:
The mono- and bimetallic catalytic polymeric hollow-fiber reactors were established with catalytic polymeric cellulose acetate (CA) hollow fibers prepared by supporting the polymer-anchored mono- or bimetallic catalyst in/on the inner wall of the hollow fibers. The selective hydrogenation of cyclopentadiene to cyclopentene was efficiently carried out in the above catalytic polymeric hollow-fiber reactors, especially in the NaBH4 reduced bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor under mild conditions of 40 degrees C and 0.1 MPa. It was found that there was a remarkable synergic effect of palladium and cobalt reduced by NaBH4 in the bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor, which results in a 97.5% conversion of cyclopentadiene and a 98.4% selectivity for cyclopentene. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Nanoporous VSB-5 nickel phosphate molecular sieves with relatively well controllable sizes and morphology of microspheres assembled from nanorods were synthesized at 140 degrees C over a short time in the presence of hexamethylenetetramine (HMT) by a facile hydrothermal method. The pH value, reaction time, and ratio of HMT to NaHPO2-H2O crucially influence the morphology and quality of the final products.
Resumo:
Hydrogenation of alpha,beta-unsaturated aldehydes (citral, 3-methyl-2-butenal, cinnamaldehyde) has been studied with tetrakis(triphenylphosphine) ruthenium dihydride (H2Ru(TPP)(4)) catalyst in a poly(ethylene glycol) (PEG)/ compressed carbon dioxide biphasic system. The hydrogenation reaction was slow under PEG/ H-2 biphasic conditions at H-2 4 MPa in the absence of CO2. When the reaction mixture was pressurized by a non-reactant of CO2, however, the reaction was significantly accelerated.
Resumo:
The reaction rates of the hydrogenation of maleic anhydride (MAH) and succinic anhydride (SAH) were significantly accelerated and the selectivity to gamma-butyrolactone (GBL) was enhanced largely when the reaction mixture was pressurized by a non-reactant of CO2. Above 99% selectivity to GBL was achieved in 14 MPa CO2, the superior selectivity in scCO(2) was attributed to that MAH and/or SAH could be extracted to CO2 phase and separated from H2O, the hydrolysis were thus minimized and so the selectivity to GBL was improved.
Resumo:
The selective hydrogenation of nitrobenzene (NB) over Ni/gamma-Al2O3 Catalysts Was investigated using different media of dense phase CO2, ethanol, and n-hexane. In dense phase CO2, the total rate of NB hydrogenation was larger than that in organic solvents under similar reaction conditions; the selectivity to the desired product, aniline, was almost 100% over the whole conversion range of 0-100%. The phase behavior of the reactant mixture in/under dense phase CO2 was examined at reaction conditions. In situ high-pressure Fourier transform infrared measurements were made to study the molecular interactions Of CO2 with the following reactant and reaction intermediates: NB, nitrosobenzene (NSB), and N-phenylhydroxylamine (PHA). Dense phase CO2 strongly interacts with NB, NSB, and PHA, modifying the reactivity of each species and contributing to positive effects on the reaction rate and the selectivity to aniline. A possible reaction pathway for the hydrogenation of NB in/under dense phase CO2 over Ni/gamma-Al2O3 is also proposed.
Resumo:
CO2-in-Water (C/W) emulsion was formed by using a nonionic surfactant of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (P123), and palladium nanoparticles were synthesized in situ in the present work. The catalytic performance of Pd nanoparticles in the C/W emulsion has been discussed for a selective hydrogenation of citral. Much higher activity with a turnover frequency (TOF) of 6313 h(-1) has been obtained in this unique C/W emulsion compared to that in the W/C microemulsion (TOF, 23 h(-1)), since the reaction was taking place not only in the surfactant shell but also on the inner surface of the CO2 core in the C/W emulsion. Moreover, citronellal was obtained with a higher selectivity for that it was extracted to a supercritical carbon dioxide (scCO(2)) phase as formed and thus its further hydrogenation was prohibited. The Pd nanoparticles could be recycled several times and still retain the same selectivity, but it showed a little aggregation leading to a slight decrease in conversion.
Resumo:
In the present work, platinum nanoparticles were prepared by in situ reduction with polyethylene glycols (PEGs). The catalytic performance of Pt nanoparticles immobilized in PEGs (Pt-PEGs) is discussed for the hydrogenation of o-chloronitrobenzene (o-CNB). A high selectivity to o-chloroaniline (o-CAN) of about 99.7% was obtained with the Pt-PEGs catalysts at the complete conversion of o-CNB, which is much higher than that (83.4%) obtained over the conventional catalyst of Pt/C. The Pt nanoparticies could be immobilized in PEGs stably and recycled for four times with the same activity and selectivity. It presents a promising performance in the hydrogenation and its wide application in catalytic reactions is expected.
Resumo:
The activity and selectivity of the transition metal complexes formed from Ru, Rh, Pd and Ni with triphenylphosphine (TPP) have been investigated for hydrogenation of citral in supercritical carbon dioxide (scCO(2)). High activities are obtained with Ru/TPP and Pd/TPP catalysts, and the overall activity is in the order of Pd approximate to Ru > Rh > Ni. The Ru/TPP complex is highly selective to the formation of unsaturated alcohols of geraniol and nerol. In contrast, the Pd/TPP catalyst is more selective to partially saturated aldehydes of citronellal. Furthermore, the influence of several parameters such as CO2 and H-2 pressures, N-2 pressure and reaction time has been discussed. CO2 pressure has a significant impact on the product distribution, and the selectivity for geraniol and nerol can be enhanced from 27% to 75% with increasing CO2 pressure from 6 to 16 MPa, while the selectivity for citronellol decreases from 70% to 20%. Striking changes in the conversion and product distribution in scCO(2) could be interpreted with variations in the phase behavior and the molecular interaction between CO2 and the substrate in the gas phase and in the liquid phase.