998 resultados para saturation irradiance


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Driven by a double 75 ps pulse with 2.2 ns separation, saturated operation of nickel-like Ag, In, Sn, and Sm X-ray lasers have been demonstrated with only 75 J drive energy on target. The variation of X-ray laser output with target length is found to fit well to a simple model for an amplified spontaneous emission (ASE) laser including saturation. Small signal gains of similar to 10 cm(-1), effective gain length products of similar to 18, and saturation irradiance of (1-5)x 10(10) W/cm(2) are measured for these lasers using a fitting procedure. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parameters in the photosynthesis-irradiance (P-E) relationship of phytoplankton were used to calculate daily production at weekly to bi-weekly intervals for 20 years at 6 stations on the Rhode River, Maryland (USA). The objectives of this work were to determine the patterns and controls on the P-E parameters and primary production of phytoplankton in a shallow eutrophic estuary. Additional measurements that are components of calculated daily rates of primary productivity are given: the light-saturation irradiance, photoperiod, maximal noon incident irradiance, optical depth, dimensionless depth integrals, and a correction for spectral selectivity of light absorption. P-E parameters and chlorophyll a concentrations were given in a related dataset, Gallegos (2012, doi:10.1594/PANGAEA.816494).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the nonlinear optical properties of nanolayered Se/As2S3 film with a modulation period of 10 nm and a total thickness of 1.15 mu m at two [1064 nm (8 ns) and 800 nm (20 ps)] wavelengths using the standard Z-scan technique. Three-photon absorption was observed at off-resonant excitation and saturation of two-photon absorption at quasiresonant excitation. The observation of the saturation of two-photon absorption is because the pulse duration is shorter than the thermalization time of the photocreated carriers in their bands and three-photon absorption is due to high excitation irradiance. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photosynthetic oxygen evolution of Caulerpa serrulata was determined with oxygen electrodes. The effects of light and temperature on the growth and regeneration of fragmented C. serrulata thalli were analyzed. The regenerating rate and establishment of different sizes and portions of C. serrulata were studied. The results showed that the light saturation point of C. serrulata was 200 mu mol photons/m(2) per s and the optimum growth temperature was 25-30 degrees C. Under these conditions, the maximum photosynthetic oxygen evolution rate was 15.1 +/- 0.29 mg O-2/mg Chl a/h, the growth rate and elongation rate reached the highest values, 4.67 +/- 0.09 mg FW/d and 0.78 +/- 0.01 mm/d, respectively. The fragmented C. serrulata thalli was regenerated at 20-35 degrees C and survived at 15 degrees C and 200 mu mol photons/m(2) per s. A different survival rate was detected according to fragment size. All of these results indicated that C. serrulata was a candidate to become an invasive species if introduced into a new place. Therefore, we should pay more attention to C. serrulata for its potential threat to marine ecosystem when it is sold for aquarium use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work demonstrates the usefulness of the Open Photoacoustic Cell Technique to study the effects of irradiance and temperature on photosynthesis. bl vivo and ill situ photosynthetic induction measurements were performed in three different species of eucalyptus plants (E. grandis, E. urophylla, and E, urograndis) previously dark-adapted at different temperatures. Photosynthetic activity curves were built as a function of light intensity, indicating the occurrence of photosynthesis saturation. E. urograndis presented higher photosynthetic activity than the other species, especially at low temperature, indicating its tolerance to stress conditions. The incidence of background saturation light of various intensities allowed the irt situ study of photoinhibition in eucalyptus plants through open photoacoustics. (C) 2001 MAIK Nauka/Interperiodica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Responses of net photosynthetic rates to temperature, irradiance, pH/inorganic carbon and diurnal rhythm were analyzed in 15 populations of eight freshwater red algal species in culture and natural conditions. Photosynthetic rates were determined by oxygen concentration using the light and dark bottles technique. Parameters derived from the photosynthesis-irradiance curves indicated adaptation to low irradiance for all freshwater red algae tested, confirming that they tend to occur under low light regimes. Some degree of photoinhibition (β = -0.33-0.01 mg O2 g-1 DW h-1 (μmol photons m-2 s-1)-1) was found for all species/populations analyzed, whereas light compensation points (lc) were very low (≤ 2 μmol photons m- photons s-1) for most algae tested. Saturation points were low for all algae tested (lk = 6-54 μmol photons m-2 S-1; lS = 20-170 μmol photons m-2 s-1). Rates of net photosynthesis and dark respiration responded to the variation in temperature. Optimum temperature values for net photosynthesis were variable among species and populations so that best performances were observed under distinct temperature conditions (10, 15, 20 or 25°C). Rates of dark respiration exhibited an increasing trend with temperature, with highest values under 20-25°C. Results from pH experiments showed best photosynthetic performances under pH 8.5 or 6.5 for all but one species, indicating higher affinity for inorganic carbon as bicarbonate or indistinct use of bicarbonate and free carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for all algae tested, which was characterized by two relatively clear peaks, with some variations around it: a first (higher) during the morning (07.00-11.00 hours.) and a second (lower) in the afternoon (14.00-18.00 hours). Comparative data between the 'Chantransia' stage and the respective gametophyte for one Batrachospermum population revealed higher values (ca 2-times) in the latter, much lower than previously reported. The physiological role of the 'Chantransia' stage needs to be better analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some predictions of how ocean acidification (OA) will affect coral reefs assume a linear functional relationship between the ambient seawater aragonite saturation state (Omega a) and net ecosystem calcification (NEC). We quantified NEC in a healthy coral reef lagoon in the Great Barrier Reef during different times of the day. Our observations revealed a diel hysteresis pattern in the NEC versus Omega a relationship, with peak NEC rates occurring before the Omega a peak and relatively steady nighttime NEC in spite of variable Omega a. Net ecosystem production had stronger correlations with NEC than light, temperature, nutrients, pH, and Omega a. The observed hysteresis may represent an overlooked challenge for predicting the effects of OA on coral reefs. If widespread, the hysteresis could prevent the use of a linear extrapolation to determine critical Omega a threshold levels required to shift coral reefs from a net calcifying to a net dissolving state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs are essential to many nations, and are currently in global decline. Although climate models predict decreases in seawater pH (0.3 units) and oxygen saturation (5 percentage points), these are exceeded by the current daily pH and oxygen fluctuations on many reefs (pH 7.8-8.7 and 27-241% O2 saturation). We investigated the effect of oxygen and pH fluctuations on coral calcification in the laboratory using the model species Acropora millepora. Light calcification rates were greatly enhanced (+178%) by increased seawater pH, but only at normoxia; hyperoxia completely negated this positive effect. Dark calcification rates were significantly inhibited (51-75%) at hypoxia, whereas pH had no effect. Our preliminary results suggest that within the current oxygen and pH range, oxygen has substantial control over coral growth, whereas the role of pH is limited. This has implications for reef formation in this era of rapid climate change, which is accompanied by a decrease in seawater oxygen saturation owing to higher water temperatures and coastal eutrophication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In natural environments, marine biotas are exposed to a variety of simultaneously acting abiotic factors. Among these, temperature, irradiance and CO2 availability are major factors influencing the physiological performance of marine macroalgae. To test whether elevated levels of CO2 may remediate the otherwise reduced performance of uncalcified seaweeds under the influence of other stressful abiotic factors, we performed multifactorial experiments with the red alga Chondrus crispus from Helgoland (North Sea) with two levels of CO2, temperature and irradiance: low and high pCO2 levels were tested in combination with either (1) optimal and low irradiances or (2) optimal and sub-lethal high temperatures for growth. Performance of C. crispus was evaluated as biomass increase and relative growth rates (RGR), gross photosynthesis and pigment content. Acclimations of growth and photosynthesis were measured after 4 and 8 days. Acclimation time was crucial for elucidating single or combined CO2 effects on growth and photosynthesis. Signifi- cant CO2 effects became evident only in combination with either elevated temperature or reduced irradiance. Growth and photosynthesis had divergent patterns: RGR and biomass significantly increased only under a combination of high pCO2 and elevated temperature; gross photosynthesis was significantly reduced under high pCO2 conditions at low irradiance. Pigment content varied in response to irradiance and temperature, but was independent of pCO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the responses of the ecologically dominant Antarctic phytoplankton species Phaeocystis antarctica (a prymnesiophyte) and Fragilariopsis cylindrus (a diatom) to a clustered matrix of three global change variables (CO2, mixed-layer depth, and temperature) under both iron (Fe)-replete and Fe-limited conditions based roughly on the Intergovernmental Panel on Climate Change (IPCC) A2 scenario: (1) Current conditions, 39 Pa (380 ppmv) CO2, 50 µmol photons/m**2/s light, and 2°C; (2) Year 2060, 61 Pa (600 ppmv) CO2, 100 µmol photons/m**2/s light, and 4°C; (3) Year 2100, 81 Pa (800 ppmv) CO2, 150 µmol photons/m**2/s light, and 6°C. The combined interactive effects of these global change variables and changing Fe availability on growth, primary production, and cell morphology are species specific. A competition experiment suggested that future conditions could lead to a shift away from P. antarctica and toward diatoms such as F. cylindrus. Along with decreases in diatom cell size and shifts from prymnesiophyte colonies to single cells under the future scenario, this could potentially lead to decreased carbon export to the deep ocean. Fe : C uptake ratios of both species increased under future conditions, suggesting phytoplankton of the Southern Ocean will increase their Fe requirements relative to carbon fixation. The interactive effects of Fe, light, CO2, and temperature on Antarctic phytoplankton need to be considered when predicting the future responses of biology and biogeochemistry in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.