984 resultados para salt-alkali stress


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Enhanced sodium intake increases volume overload, oxidative stress and production of proinflammatory cytokines. In animal models, increased sodium intake favours ventricular dysfunction after myocardial infarction (MI). The aim of this study was to investigate, in human subjects presenting with ST-segment elevation MI (STEMI), the impact of sodium intake prior the coronary event. Methods: Consecutive patients (n = 372) admitted within the first 24 h of STEMI were classified by a food intake questionnaire as having a chronic daily intake of sodium higher (HS) or lower (LS) than 1.2 g in the last 90 days before MI. Plasma levels of 8-isoprostane, interleucin-2 (IL-2), tumour necrosis factor type alpha (TNF-alpha), C-reactive protein (CRP) and brain natriuretic peptide (BNP) were measured at admission and at the fifth day. Magnetic resonance imaging was performed immediately after discharge. Total mortality and recurrence of acute coronary events were investigated over 4 years of follow-up. Results: The decrease of 8-isoprostane was more prominent and the increase of IL-2, TNF-alpha and CRP less intense during the first 5 days in LS than in HS patients (p < 0.05). Sodium intake correlated with change in plasma BNP between admission and fifth day (r = 0.46; p < 0.0001). End-diastolic volumes of left atrium and left ventricle were greater in HS than in LS patients (p < 0.05). In the first 30 days after MI and up to 4 years afterwards, total mortality was higher in HS than in LS patients (p < 0.05). Conclusion: Excessive sodium intake increases oxidative stress, inflammatory response, myocardial stretching and dilatation, and short and long-term mortality after STEMI. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coastal ecosystems lie at the forefront of sea level rise. We posit that before the onset of actual inundation, sea level rise will influence the species composition of coastal hardwood hammocks and buttonwood (Conocarpus erectus L.) forests of the Everglades National Park based on tolerance to drought and salinity. Precipitation is the major water source in coastal hammocks and is stored in the soil vadose zone, but vadose water will diminish with the rising water table as a consequence of sea level rise, thereby subjecting plants to salt water stress. A model is used to demonstrate that the constraining effect of salinity on transpiration limits the distribution of freshwater-dependent communities. Field data collected in hardwood hammocks and coastal buttonwood forests over 11 years show that halophytes have replaced glycophytes. We establish that sea level rise threatens 21 rare coastal species in Everglades National Park and estimate the relative risk to each species using basic life history and population traits. We review salinity conditions in the estuarine region over 1999–2009 and associate wide variability in the extent of the annual seawater intrusion to variation in freshwater inflows and precipitation. We also examine species composition in coastal and inland hammocks in connection with distance from the coast, depth to water table, and groundwater salinity. Though this study focuses on coastal forests and rare species of South Florida, it has implications for coastal forests threatened by saltwater intrusion across the globe.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

World population is increasing at an alarming rate while food productivity is decreasing due to the effect of various abiotic stresses. Soil salinity is one of the most important abiotic stress and a limiting factor for worldwide plant production. In addition to its important effects on yield, salt stress affects numerous cellular activities, including cell wall composition, photosynthesis, protein synthesis, ions and organic solutes. Up to 20% of the irrigated arable land in arid and semiarid regions is already salt affected and is still expanding. Improving salt tolerant varieties is of major importance, and efforts should be focused on finding adaptive mechanisms which are involved in salinity tolerance. In this study, several spelt wheat (Triticum aestivum var. Spelta) genotypes and one cultivar of modern bread wheat were used to screen them for salt tolerance. Spelt is an old-European cereal crop currently attracting renewed interest as a food grain because it is said to be harder than wheat and requires less fertilizer. Spelt wheat is also becoming very attractive genetic source by plant breeders due to its wide adaptation ability to various stressful conditions such as soil salinity. In this study morphological parameters (e.g., leaf appearance; shoot elongation), dry matter production, mineral nutrients (especially Na and K), and activity of antioxidative enzymes were measured to select superior genotypes of spelt for salt tolerance. The results showed that Spelt genotype Sp41 is a salt sensitive genotype and genotypes Sp69, Sp96 and Sp912 are good candidates for salt tolerant genotypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the tolerance of mango cultivars 'Haden', 'Palmer', 'Tommy Atkins' and 'Uba' grafted on rootstock 'Imbú' to salt stress using chlorophyll fluorescence. Plants were grown in modified Hoagland solution containing 0, 15, 30, and 45 mmol L-1 NaCl. At 97 days the parameters of the chlorophyll fluorescence (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs)/(Fm')], D = (1- Fv'/Fm') and ETR = (ΦPSII×PPF×0,84×0,5) were determined. At 100 days, the leaf emission and leaf area, toxicity and leaf abscission indexes were determined. In all cultivars evaluated, in different degree, there were decreases in photochemical efficiency of photosystem II, enhanced concentrations from 15 mmol L-1 NaCl. The decreases in the potential quantum yield of photosystem II (Fv/Fm) were 27.9, 18.7, 20.5, and 27.4%, for cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba', respectively, when grown in 45 mmol L-1 NaCl. It was found decreases in leaf emission and mean leaf area in all cultivars from 15 mmol L-1 NaCl. There were increases in leaf toxicity of 33.0, 67.5, 41.6 and 80.8% and in leaf abscission of 71.8, 29.2, 32.5, and 67.9% for the cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba' respectively, when grown in 45 mmol L-1 NaCl. Leaf toxicity and leaf abscission were not observed in 15 mmol L-1 NaCl. The decrease in Fv/Fm ratio were accompanied by decreasing in leaf emission and increased leaf toxicity index, showing, therefore, the potential of chlorophyll fluorescence in the early detection of salt stress in mango tree.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study evaluated the physiological responses of matrinxa, Brycon cephalus (Gunther), submitted to transport stress under the influence of sodium chloride, Different salt concentrations (0.0%, 0.1%, 0.3% and 0.6%) were added to four 200-L plastic tanks. Each tank was stocked with 30 fish (mean weight 1.0 +/- 0.2 kg) and transported for 4 h. Blood was sampled prior to transport and immediately after and 24 and 96 h after transport. Plasma cortisol and glucose and serum sodium and potassium, plasma chloride and ammonia were analysed, Changes in plasma cortisol were observed immediately after transportation, except in fish transported in 0.3% and 0.6% salt. Twenty-four hours later, this hormone had returned to its initial level in all fish. Blood glucose was not changed in fish treated with 0.6% salt immediately after transport, and returned to the initial level within 96 h after the other treatments. All treatments resulted in lower levels of plasma chloride after transport, except for fish treated with 0.6% salt, with fish treated with 0.0% and 0.3% salt recovering 24 h later, Serum sodium decreased immediately after transport only in the control fish, returning to the initial level 24 h later, the results indicate that treatment with 0.6% NaCl reduces most of the physiological responses of matrinxa to the stress of transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar o efeito do estresse salino sobre a eficiência fotoquímica do fotossistema II (PSII) nas cultivares de manga 'Haden', 'Palmer', 'Tommy Atkins' e 'Ubá' enxertadas sobre o porta-enxerto 'Imbu'. Foi utilizada solução nutritiva de Hoagland modificada contendo 0; 15; 30e 45 mmol L-1 NaCl. Aos 97 dias após a exposição ao estresse salino, foram avaliados os parâmetros da fluorescência da clorofila (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs)/(Fm')], D = (1- Fv'/Fm') e ETR = (ΦPSII×PPF×0,84×0,5). Aos 100 dias, foram avaliados a emissão foliar, a área média de folhas (cm²), o índice de toxidez nas folhas e o índice de abscisão foliar. em todas as cultivares, em graus diferenciados, ocorreram decréscimo na eficiência fotoquímica do fotossistema II, na emissão de folhas, e aumento nos índices de toxidez e abscisão foliar, intensificados nas concentrações a partir de 15 mmol L-1 NaCl. As plantas cultivadas em 45 mmol L-1 NaCl apresentaram decréscimos na razão Fv/Fm de 27,9; 18,7; 20,5 e 27,4%, incremento no índice de toxidez foliar de 33,0; 67,5; 41,6 e 80,8% e no índice de abscisão foliar de 71,8; 29,2; 32,5 e 67,9% para as cultivares 'Haden', 'Palmer', 'Tommy Atkins' e 'Uba', respectivamente. Os decréscimos na razão Fv/Fm foram acompanhados de redução na emissão de folhas e aumento no índice de toxidez foliar, mostrando, portanto, o potencial da fluorescência da clorofila na detecção precoce de estresse salino em mangueira.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adaptive capacity of bean (Phaseolus vulgaris L.) calluses (cultivars IAC-carioca, JALO EEP-558, BAT-93 and IAPAR-14) to salt stress (0-80 mM) was verified to determine the existence of biochemical markers such as organic and inorganic compounds, and metabolism of polyamines. The results obtained demonstrate that salt (NaCl) interfered with all the parameters analyzed and its intensity ranged due to the salt concentration and the cultivars used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The knowledge of the physiology of Eucalyptus spp. germination may contribute significantly to the development of management and choice of suitability of the deployment areas. The aim was to evaluate the effects of water and salt stress on seed germination of Eucalyptus camaldulensis, E. citriodora, E. grandis, E. robusta and E. urophylla. The seeding was done with four replicates of 0.05 g of seeds in paper moistened with solutions at potentials of 0.0, -0.2, -0.4, and -0.8 MPa, induced with polyethylene glycol (PEG 6000) and NaCl. The germination test was in 25 degrees C in the presence of light. Were evaluated the first test score seven days after sowing, and weekly germination (normal seedlings) until 28 days. Were also calculated the germination speed index. Water stress causes a greater reduction in the rate of germination and accumulated germination of E. camaldulensis and E. citriodora seeds than salt stress, and the seeds of E. robusta are more adapted to germinate under salt stress moderate, between -0.2 and -0.4 MPa. Regardless of the substance used to induce stress, the threshold for germination was -0.8 MPa. The E. camaldulensis is the most sensitive specie to water stress and E. urophylla most sensitive to salt stress.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GSK3/shaggy-like genes encode kinases that are involved in a variety of biological processes. By functional complementation of the yeast calcineurin mutant strain DHT22-1a with a NaCl stress-sensitive phenotype, we isolated the Arabidopsis cDNA AtGSK1, which encodes a GSK3/shaggy-like protein kinase. AtGSK1 rescued the yeast calcineurin mutant cells from the effects of high NaCl. Also, the AtGSK1 gene turned on the transcription of the NaCl stress-inducible PMR2A gene in the calcineurin mutant cells under NaCl stress. To further define the role of AtGSK1 in the yeast cells we introduced a deletion mutation at the MCK1 gene, a yeast homolog of GSK3, and examined the phenotype of the mutant. The mck1 mutant exhibited a NaCl stress-sensitive phenotype that was rescued by AtGSK1. Also, constitutive expression of MCK1 complemented the NaCl-sensitive phenotype of the calcineurin mutants. Therefore, these results suggest that Mck1p is involved in the NaCl stress signaling in yeast and that AtGSK1 may functionally replace Mck1p in the NaCl stress response in the calcineurin mutant. To investigate the biological function of AtGSK1 in Arabidopsis we examined the expression of AtGSK1. Northern-blot analysis revealed that the expression is differentially regulated in various tissues with a high level expression in flower tissues. In addition, the AtGSK1 expression was induced by NaCl and exogenously applied ABA but not by KCl. Taken together, these results suggest that AtGSK1 is involved in the osmotic stress response in Arabidopsis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Salt accumulation in spinach (Spinacia oleracea L.) leaves first inhibits photosynthesis by decreasing stomatal and mesophyll conductances to CO2 diffusion and then impairs ribulose-1,5-bisphosphate carboxylase/oxygenase (S. Delfine, A. Alvino, M. Zacchini, F. Loreto [1998] Aust J Plant Physiol 25: 395–402). We measured gas exchange and fluorescence in spinach recovering from salt accumulation. When a 21-d salt accumulation was reversed by 2 weeks of salt-free irrigation (rewatering), stomatal and mesophyll conductances and photosynthesis partially recovered. For the first time, to our knowledge, it is shown that a reduction of mesophyll conductance can be reversed and that this may influence photosynthesis. Photosynthesis and conductances did not recover when salt drainage was restricted and Na content in the leaves was greater than 3% of the dry matter. Incomplete recovery of photosynthesis in rewatered and control leaves may be attributed to an age-related reduction of conductances. Biochemical properties were not affected by the 21-d salt accumulation. However, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and content were reduced by a 36- to 50-d salt accumulation. Photochemical efficiency was reduced only in 50-d salt-stressed leaves because of a decrease in the fraction of open photosystem II centers. A reduction in chlorophyll content and an increase in the chlorophyll a/b ratio were observed in 43- and 50-d salt-stressed leaves. Low chlorophyll affects light absorptance but is unlikely to change light partitioning between photosystems.