819 resultados para rule-based algorithms
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.
Resumo:
Background Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have previously demonstrated that a patient's antibody reaction pattern in a confirmatory line immunoassay (INNO-LIA™ HIV I/II Score) provides information on the duration of infection, which is unaffected by clinical, immunological and viral variables. In this report we have set out to determine the diagnostic performance of Inno-Lia algorithms for identifying incident infections in patients with known duration of infection and evaluated the algorithms in annual cohorts of HIV notifications. Methods Diagnostic sensitivity was determined in 527 treatment-naive patients infected for up to 12 months. Specificity was determined in 740 patients infected for longer than 12 months. Plasma was tested by Inno-Lia and classified as either incident (< = 12 m) or older infection by 26 different algorithms. Incident infection rates (IIR) were calculated based on diagnostic sensitivity and specificity of each algorithm and the rule that the total of incident results is the sum of true-incident and false-incident results, which can be calculated by means of the pre-determined sensitivity and specificity. Results The 10 best algorithms had a mean raw sensitivity of 59.4% and a mean specificity of 95.1%. Adjustment for overrepresentation of patients in the first quarter year of infection further reduced the sensitivity. In the preferred model, the mean adjusted sensitivity was 37.4%. Application of the 10 best algorithms to four annual cohorts of HIV-1 notifications totalling 2'595 patients yielded a mean IIR of 0.35 in 2005/6 (baseline) and of 0.45, 0.42 and 0.35 in 2008, 2009 and 2010, respectively. The increase between baseline and 2008 and the ensuing decreases were highly significant. Other adjustment models yielded different absolute IIR, although the relative changes between the cohorts were identical for all models. Conclusions The method can be used for comparing IIR in annual cohorts of HIV notifications. The use of several different algorithms in combination, each with its own sensitivity and specificity to detect incident infection, is advisable as this reduces the impact of individual imperfections stemming primarily from relatively low sensitivities and sampling bias.
Resumo:
Objective: Recently, much research has been proposed using nature inspired algorithms to perform complex machine learning tasks. Ant colony optimization (ACO) is one such algorithm based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper investigates ant-based algorithms for gene expression data clustering and associative classification. Methods and material: An ant-based clustering (Ant-C) and an ant-based association rule mining (Ant-ARM) algorithms are proposed for gene expression data analysis. The proposed algorithms make use of the natural behavior of ants such as cooperation and adaptation to allow for a flexible robust search for a good candidate solution. Results: Ant-C has been tested on the three datasets selected from the Stanford Genomic Resource Database and achieved relatively high accuracy compared to other classical clustering methods. Ant-ARM has been tested on the acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML) dataset and generated about 30 classification rules with high accuracy. Conclusions: Ant-C can generate optimal number of clusters without incorporating any other algorithms such as K-means or agglomerative hierarchical clustering. For associative classification, while a few of the well-known algorithms such as Apriori, FP-growth and Magnum Opus are unable to mine any association rules from the ALL/AML dataset within a reasonable period of time, Ant-ARM is able to extract associative classification rules.
Resumo:
The relation between patient and physician in most modern Health Care Sys- tems is sparse, limited in time and very in exible. On the other hand, and in contradiction with several recent studies, most physicians do not rely their patient diagnostics evaluations on intertwined psychological and social nature factors. Facing these problems and trying to improve the patient/physician relation we present a mobile health care solution to im- prove the interaction between the physician and his patients. The solution serves not only as a privileged mean of communication between physicians and patients but also as an evolutionary intelligent platform delivering a mobile rule based system.
Resumo:
In this paper, a linguistically rule-based grapheme-to-phone (G2P) transcription algorithm is described for European Portuguese. A complete set of phonological and phonetic transcription rules regarding the European Portuguese standard variety is presented. This algorithm was implemented and tested by using online newspaper articles. The obtained experimental results gave rise to 98.80% of accuracy rate. Future developments in order to increase this value are foreseen. Our purpose with this work is to develop a module/ tool that can improve synthetic speech naturalness in European Portuguese. Other applications of this system can be expected like language teaching/learning. These results, together with our perspectives of future improvements, have proved the dramatic importance of linguistic knowledge on the development of Text-to-Speech systems (TTS).
Resumo:
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.
Resumo:
ABSTRACT: BACKGROUND: Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have shown that a patient's antibody reaction in a confirmatory line immunoassay (INNO-LIATM HIV I/II Score, Innogenetics) provides information on the duration of infection. Here, we sought to further investigate the diagnostic specificity of various Inno-Lia algorithms and to identify factors affecting it. METHODS: Plasma samples of 714 selected patients of the Swiss HIV Cohort Study infected for longer than 12 months and representing all viral clades and stages of chronic HIV-1 infection were tested blindly by Inno-Lia and classified as either incident (up to 12 m) or older infection by 24 different algorithms. Of the total, 524 patients received HAART, 308 had HIV-1 RNA below 50 copies/mL, and 620 were infected by a HIV-1 non-B clade. Using logistic regression analysis we evaluated factors that might affect the specificity of these algorithms. RESULTS: HIV-1 RNA <50 copies/mL was associated with significantly lower reactivity to all five HIV-1 antigens of the Inno-Lia and impaired specificity of most algorithms. Among 412 patients either untreated or with HIV-1 RNA ≥50 copies/mL despite HAART, the median specificity of the algorithms was 96.5% (range 92.0-100%). The only factor that significantly promoted false-incident results in this group was age, with false-incident results increasing by a few percent per additional year. HIV-1 clade, HIV-1 RNA, CD4 percentage, sex, disease stage, and testing modalities exhibited no significance. Results were similar among 190 untreated patients. CONCLUSIONS: The specificity of most Inno-Lia algorithms was high and not affected by HIV-1 variability, advanced disease and other factors promoting false-recent results in other STARHS. Specificity should be good in any group of untreated HIV-1 patients.
Resumo:
One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.
Resumo:
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.
Resumo:
This article describes the developmentof an Open Source shallow-transfer machine translation system from Czech to Polish in theApertium platform. It gives details ofthe methods and resources used in contructingthe system. Although the resulting system has quite a high error rate, it is still competitive with other systems.
Resumo:
This paper proposes to enrich RBMTdictionaries with Named Entities(NEs) automatically acquired fromWikipedia. The method is appliedto the Apertium English-Spanishsystem and its performance comparedto that of Apertium with and withouthandtagged NEs. The system withautomatic NEs outperforms the onewithout NEs, while results vary whencompared to a system with handtaggedNEs (results are comparable forSpanish to English but slightly worstfor English to Spanish). Apart fromthat, adding automatic NEs contributesto decreasing the amount of unknownterms by more than 10%.
Resumo:
We describe a series of experiments in which we start with English to French and English to Japanese versions of an Open Source rule-based speech translation system for a medical domain, and bootstrap correspondign statistical systems. Comparative evaluation reveals that the rule-based systems are still significantly better than the statistical ones, despite the fact that considerable effort has been invested in tuning both the recognition and translation components; also, a hybrid system only marginally improved recall at the cost of a los in precision. The result suggests that rule-based architectures may still be preferable to statistical ones for safety-critical speech translation tasks.
Resumo:
BACKGROUND: HIV surveillance requires monitoring of new HIV diagnoses and differentiation of incident and older infections. In 2008, Switzerland implemented a system for monitoring incident HIV infections based on the results of a line immunoassay (Inno-Lia) mandatorily conducted for HIV confirmation and type differentiation (HIV-1, HIV-2) of all newly diagnosed patients. Based on this system, we assessed the proportion of incident HIV infection among newly diagnosed cases in Switzerland during 2008-2013. METHODS AND RESULTS: Inno-Lia antibody reaction patterns recorded in anonymous HIV notifications to the federal health authority were classified by 10 published algorithms into incident (up to 12 months) or older infections. Utilizing these data, annual incident infection estimates were obtained in two ways, (i) based on the diagnostic performance of the algorithms and utilizing the relationship 'incident = true incident + false incident', (ii) based on the window-periods of the algorithms and utilizing the relationship 'Prevalence = Incidence x Duration'. From 2008-2013, 3'851 HIV notifications were received. Adult HIV-1 infections amounted to 3'809 cases, and 3'636 of them (95.5%) contained Inno-Lia data. Incident infection totals calculated were similar for the performance- and window-based methods, amounting on average to 1'755 (95% confidence interval, 1588-1923) and 1'790 cases (95% CI, 1679-1900), respectively. More than half of these were among men who had sex with men. Both methods showed a continuous decline of annual incident infections 2008-2013, totaling -59.5% and -50.2%, respectively. The decline of incident infections continued even in 2012, when a 15% increase in HIV notifications had been observed. This increase was entirely due to older infections. Overall declines 2008-2013 were of similar extent among the major transmission groups. CONCLUSIONS: Inno-Lia based incident HIV-1 infection surveillance proved useful and reliable. It represents a free, additional public health benefit of the use of this relatively costly test for HIV confirmation and type differentiation.
Resumo:
This paper describes the development of a two-way shallow-transfer rule-based machine translation system between Bulgarian and Macedonian. It gives an account of the resources and the methods used for constructing the system, including the development of monolingual and bilingual dictionaries, syntactic transfer rules and constraint grammars. An evaluation of thesystem's performance was carried out and compared to another commercially available MT system for the two languages. Some future work was suggested.