239 resultados para riverbank destabilization
Resumo:
Changes in the hydrological regime of the Lower São Francisco River, located in Northeastern Brazil have brought negative environmental impacts, jeopardizing the flora and fauna of a global biodiversity hotspot, due to implementation of hydroelectric power dams and surface water withdrawal for irrigation in public and private perimeters. Remnants of the riparian stratum associated to the riverbank destabilization in six fragments were studied by surveying trees, shrubs, herbs, and aquatic species. The calculation of the Factor of Safety (FS) was performed in order to understand the riverbank's stability related to soil texture and vegetation cover. An overall number of 51 botanic families distributed in 71 genera and 79 species were recorded, predominantly from the families Mimosaceae, Myrtaceae, and Fabaceae. The fragmented riparian vegetation is mostly covered by secondary species under a strong anthropogenic impact such as deforestation, mining and irrigation, with an advanced erosion process in the river margins. Strong species that withstand the waves present in the river flow are needed to reduce the constant landslides that are mainly responsible for the river sedimentation and loss of productive lands. A lack of preservation attitude among the local landholders was identified, and constitutes a continuing threat to the riparian ecosystem biodiversity.
Resumo:
Sackung is a widespread post-glacial morphological feature affecting Alpine mountains and creating characteristic geomorphological expression that can be detected from topography. Over long time evolution, internal deformation can lead to the formation of rapidly moving phenomena such as a rock-slide or rock avalanche. In this study, a detailed description of the Sierre rock-avalanche (SW Switzerland) is presented. This convex-shaped postglacial instability is one of the larger rock-avalanche in the Alps, involving more than 1.5 billion m3 with a run-out distance of about 14 km and extremely low Fahrböschung angle. This study presents comprehensive analyses of the structural and geological characteristics leading to the development of the Sierre rock-avalanche. In particular, by combining field observations, digital elevation model analyses and numerical modelling, the strong influence of both ductile and brittle tectonic structures on the failure mechanism and on the failure surface geometry is highlighted. The detection of pre-failure deformation indicates that the development of the rock avalanche corresponds to the last evolutionary stage of a pre-existing deep seated gravitational slope instability. These analyses accompanied by the dating and the characterization of rock avalanche deposits, allow the proposal of a destabilization model that clarifies the different phases leading to the development of the Sierre rock avalanche.
Resumo:
Species structure and composition in Mediterranean riparian forests are determined by hydrological features, longitudinal zonation, and riverbank topography. This study assesses the distribution of four native riparian plants along the riverbank topographic gradient in three river stretches in southern Spain, with special emphasis on the occupation of adult and young feet of each species. The studied stretches suffered minimal human disturbances, displayed semi-arid conditions, and had wide riparian areas to allow the development of the target species: black alder (Alnus glutinosa), salvia leaf willow (Salix salviifolia), narrow-leafed ash (Fraxinus angustifolia), and oleander (Nerium oleander). Thalweg height was used to define the riverbank topographic gradient. The results showed a preferential zone for black alder and salvia leaf willow in the range of 0-150 cm from the channel thalweg, with adult alders and willows being more common between 51 and 150 cm and young alders being more common under 50 cm. Conversely, narrow-leafed ash and oleander were much more frequent, and showed greater development, in the ranges of 151-200 cm and 201-250 cm, respectively, whereas the young feet of both species covered the entire topographic range. Adult feet of the four species were spatially segregated along the riverbank topographic gradient, indicating their differential ability to cope with water stress from the non-tolerant alders and willows to more tolerant narrow-leafed ash trees and oleanders. Young feet, however, showed a strategy more closely linked to the initial availability of colonisation sites within riparian areas to the dispersion strategy of each species and to the distribution of adult feet. In Mediterranean areas, where riparian management has traditionally faced great challenges, the incorporation of species preferences along riverbank gradients could improve the performance of restoration projects.
Resumo:
The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surfacescience experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10-5 Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a newCN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solidliquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solidliquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The paper analyzes Brazil's Real Plan, an exchange-rate based stabilization program, implemented in 1994, which mixed a spectacular price stabilization with some serious macroeconomic destabilization. The paper focuses on two of these imbalances: the consumption boom and the financial destabilization; showing that the former represented nothing the reverse side of a collapsed investment boom, which, in turn, led to the financial (banking) crisis. We hold that these instabilities were produced by a policy arrangement in which monetary and fiscal policies alone had to compensate for a largely appreciated, almost fixed, exchange rate anchor. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The genus Mischocyttarus comprises 245 species of neotropical basal eusocial wasps. They form small colonies (rarely more than few tens of individuals); castes are morphologically undifferentiated and determined behaviorally by agonistic interactions. The aim of this study was to verify the effects of the experimental disruption of social hierarchy on foraging activity of Mischocyttarus cerberus styx. We observed six colonies in postemergence phase and recorded data on the foraging activity under two experimental conditions: (1) removal of lower-ranked females and (2) removal of higher ranked females, except the queen. Our results showed that the removal of higher-ranked females had higher effect on the number of foraging trips of M. cerberus styx than the removal of lower-ranked females (the number of foraging trips/hour decreased by 66.4 and 32.7, resp.). Such results are likely due to the social organization of this species and the presence of a distinct class of females, which in this study were regarded as intermediates. Our data also showed that, irrespective of the hierarchical status of the females, the removal of two or three individuals affected significantly the number of foraging trips in this species. Copyright 2011 Vanderlei Conceio Costa Filho et al.
Resumo:
In spite of the high prevalence and negative impact of depression, little is known about its pathophysiology. Basic research on depression needs new animal models in order to increase knowledge of the disease and search for new therapies. The work presented here aims to provide a neurobiologically validated model for investigating the relationships among sickness behavior, antidepressants treatment, and social dominance behavior. For this purpose, dominant individuals from dyads of male Swiss mice were treated with the bacterial endotoxin lipopolysaccharide (LPS) to induce social hierarchy destabilization. Two groups were treated with the antidepressants imipramine and fluoxetine prior to LPS administration. In these groups, antidepressant treatment prevented the occurrence of social destabilization. These results indicate that this model could be useful in providing new insights into the understanding of the brain systems involved in depression.
Resumo:
Most basaltic volcanoes are affected by recurrent lateral instabilities during their evolution. Numerous factors have been shown to be involved in the process of flank destabilization occurring over long periods of time or by instantaneous failures. However, the role of these factors on the mechanical behaviour and stability of volcanic edifices is poorly-constrained as lateral failure usually results from the combined effects of several parameters. Our study focuses on the morphological and structural comparison of two end-member basaltic systems, La Reunion (Indian ocean, France) and Stromboli (southern Tyrrhenian sea, Italy). We showed that despite major differences on their volumes and geodynamic settings, both systems present some similarities as they are characterized by an intense intrusive activity along well-developed rift zones and recurrent phenomena of flank collapse during their evolution. Among the factors of instability, the examples of la Reunion and Stromboli evidence the major contribution of intrusive complexes to volcano growth and destruction as attested by field observations and the monitoring of these active volcanoes. Classical models consider the relationship between vertical intrusions of magma and flank movements along a preexisting sliding surface. A set of published and new field data from Piton des Neiges volcano (La Reunion) allowed us to recognize the role of subhorizontal intrusions in the process of flank instability and to characterize the geometry of both subvertical and subhorizontal intrusions within basaltic edifices. This study compares the results of numerical modelling of the displacements associated with high-angle and low-angle intrusions within basaltic volcanoes. We use a Mixed Boundary Element Method to investigate the mechanical response of an edifice to the injection of magmatic intrusions in different stress fields. Our results indicate that the anisotropy of the stress field favours the slip along the intrusions due to cointrusive shear stress, generating flank-scale displacements of the edifice, especially in the case of subhorizontal intrusions, capable of triggering large-scale flank collapses on basaltic volcanoes. Applications of our theoretical results to real cases of flank displacements on basaltic volcanoes (such as the 2007 eruptive crisis at La Reunion and Stromboli) revealed that the previous model of subvertical intrusions-related collapse is a likely mechanism affecting small-scale steeply-sloping basaltic volcanoes like Stromboli. Furthermore, our field study combined to modelling results confirms the importance of shallow-dipping intrusions in the morpho-structural evolution of large gently-sloping basaltic volcanoes like Piton de la Fournaise, Etna and Kilauea, with particular regards to flank instability, which can cause catastrophic tsunamis.
Resumo:
We report that aminoacylation of minimal RNA helical substrates is enhanced by mismatched or unpaired nucleotides at the first position in the helix. Previously, we demonstrated that the class I methionyl-tRNA synthetase aminoacylates RNA microhelices based on the acceptor stem of initiator and elongator tRNAs with greatly reduced efficiency relative to full-length tRNA substrates. The cocrystal structure of the class I glutaminyl-tRNA synthetase with tRNAGln revealed an uncoupling of the first (1⋅72) base pair of tRNAGln, and tRNAMet was proposed by others to have a similar base-pair uncoupling when bound to methionyl-tRNA synthetase. Because the anticodon is important for efficient charging of methionine tRNA, we thought that 1⋅72 distortion is probably effected by the synthetase–anticodon interaction. Small RNA substrates (minihelices, microhelices, and duplexes) are devoid of the anticodon triplet and may, therefore, be inefficiently aminoacylated because of a lack of anticodon-triggered acceptor stem distortion. To test this hypothesis, we constructed microhelices that vary in their ability to form a 1⋅72 base pair. The results of kinetic assays show that microhelix aminoacylation is activated by destabilization of this terminal base pair. The largest effect is seen when one of the two nucleotides of the pair is completely deleted. Activation of aminoacylation is also seen with the analogous deletion in a minihelix substrate for the closely related isoleucine enzyme. Thus, for at least the methionine and isoleucine systems, a built-in helix destabilization compensates in part for the lack of presumptive anticodon-induced acceptor stem distortion.
Resumo:
Mutations at position 187 in secreted gelsolin enable aberrant proteolysis at the 172–173 and 243–244 amide bonds, affording the 71-residue amyloidogenic peptide deposited in Familial Amyloidosis of Finnish Type (FAF). Thermodynamic comparisons of two different domain 2 constructs were carried out to study possible effects of the mutations on proteolytic susceptibility. In the construct we consider to be most representative of domain 2 in the context of the full-length protein (134–266), the D187N FAF variant is slightly destabilized relative to wild type (WT) under the conditions of urea denaturation, but exhibits a Tm identical to WT. The D187Y variant is less stable to intermediate urea concentrations and exhibits a Tm that is estimated to be ≈5°C lower than WT (pH 7.4, Ca2+-free). Although the thermodynamic data indicate that the FAF mutations may slightly destabilize domain 2, these changes are probably not sufficient to shift the native to denatured state equilibrium enough to enable the proteolysis leading to FAF. Biophysical data indicate that these two FAF variants may have different native state structures and possibly different pathways of amyloidosis.
Resumo:
SoxR is a transcription factor that governs a global defense against the oxidative stress caused by nitric oxide or excess superoxide in Escherichia coli. SoxR is a homodimer containing a pair of [2Fe-2S] clusters essential for its transcriptional activity, and changes in the stability of these metal centers could contribute to the activation or inactivation of SoxR in vivo. Herein we show that reduced glutathione (GSH) in aerobic solution disrupts the SoxR [2Fe-2S] clusters, releasing Fe from the protein and eliminating SoxR transcriptional activity. This disassembly process evidently involves oxygen-derived free radicals. The loss of [2Fe-2S] clusters does not occur in anaerobic solution and is blocked in aerobic solution by the addition of superoxide dismutase and catalase. Although H2O2 or xanthine oxidase and hypoxanthine (to generate superoxide) were insufficient on their own to cause [2Fe-2S] cluster loss, they did accelerate the rate of disassembly after GSH addition. Oxidized GSH alone was ineffective in disrupting the clusters, but the rate of [2Fe-2S] cluster disassembly was maximal when reduced and oxidized GSH were present at a ratio of approximately 1:3, which suggests the critical involvement of a GSH-based free radical in the disassembly process. Such a reaction might occur in vivo: we found that the induction by paraquat of SoxR-dependent soxS transcription was much higher in a GSH-deficient E. coli strain than in its GSH-containing parent. The results imply that GSH may play a significant role during the deactivation process of SoxR in vivo. Ironically, superoxide production seems both to activate SoxR and, in the GSH-dependent disassembly process, to switch off this transcription factor.
Resumo:
Three major characteristics of aging in animals are a slowdown of cell proliferation, an increase in residual bodies associated with age pigments, and a marked increase in the likelihood of neoplastic transformation. The 28 L subline of the NIH 3T3 line of mouse embryo fibroblasts exhibits all these characteristics when held at confluence for extended periods. The impairment of proliferation is the first behavioral characteristic detected in low density subcultures from the confluent cultures, and it persists through many cell generations of exponential multiplication. There is an equal degree of growth impairment among replicate cultures (lineages) recovered after each of 2 successive rounds of confluence, although heterogeneity appears after the third round. The growth impairment pervades the entire cell population of each lineage. The degree and duration of impairment increase with repeated rounds of confluence. A marked increase of residual bodies characteristic of age pigments occurs in the cytoplasm of all the cells kept under prolonged confluence. Neoplastic transformation first appears as foci of multilayered cells on a monolayered background of nontransformed cells. The transformed cells arise at different times in the lineages and originate from a very small fraction of the population. The transformed cells selectively overgrow the entire population in successive rounds of confluence leading to an increase in saturation density of each lineage at different times. Under cloning conditions, isolated colonies of transformed cells develop more slowly than colonies of nontransformed cells but eventually reach a higher population density. The regularity of persistent growth impairment among the lineages and the appearance of large numbers of residual bodies in all the cells of each population are more characteristic of an epigenetic process than of specific local mutations. although random chromosomal lesions cannot be ruled out. By contrast, the low frequency and stochastic character of neoplastic transformation are consistent with a conventional genetic origin. The advent in long-term confluent NIH 3T3 cultures of three cardinal characteristics of cellular aging in vivo recommends it as a model for aging cells.
The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse.
Resumo:
Because of its prominent role in global biomass storage, land vegetation is the most obvious biota to be investigated for records of dramatic ecologic crisis in Earth history. There is accumulating evidence that, throughout the world, sedimentary organic matter preserved in latest Permian deposits is characterized by unparalleled abundances of fungal remains, irrespective of depositional environment (marine, lacustrine, fluviatile), floral provinciality, and climatic zonation. This fungal event can be considered to reflect excessive dieback of arboreous vegetation, effecting destabilization and subsequent collapse of terrestrial ecosystems with concomitant loss of standing biomass. Such a scenario is in harmony with predictions that the Permian-Triassic ecologic crisis was triggered by the effects of severe changes in atmospheric chemistry arising from the rapid eruption of the Siberian Traps flood basalts.
Resumo:
Albeit anthracyclines are widely used in the treatment of solid tumors and leukemias, their mechanism of action has not been elucidated. The present study gives relevant information about the role of nonlamellar membrane structures in signaling pathways, which could explain how anthracyclines can exert their cytocidal action without entering the cell [Tritton, T. R. & Yee, G. (1982) Science 217, 248-250]. The anthracycline daunomycin reduced the formation of the nonlamellar hexagonal (HII) phase (i.e., the hexagonal phase propensity), stabilizing the bilayer structure of the plasma membrane by a direct interaction with membrane phospholipids. As a consequence, various cellular events involved in signal transduction, such as membrane fusion and membrane association of peripheral proteins [e.g., guanine nucleotide-binding regulatory proteins (G proteins and protein kinase C-alpha beta)], where nonlamellar structures (negative intrinsic monolayer curvature strain) are required, were altered by the presence of daunomycin. Functionally, daunomycin also impaired the expression of the high-affinity state of a G protein-coupled receptor (ternary complex for the alpha 2-adrenergic receptor) due to G-protein dissociation from the plasma membrane. In vivo, daunomycin also decreased the levels of membrane-associated G proteins and protein kinase C-alpha beta in the heart. The occurrence of such nonlamellar structures favors the association of these peripheral proteins with the plasma membrane and prevents daunomycin-induced dissociation. These results reveal an important role of the lipid component of the cell membrane in signal transduction and its alteration by anthracyclines.