1000 resultados para ring collector


Relevância:

100.00% 100.00%

Publicador:

Resumo:

 In this project, a novel ring collector was used to convert newly electrospun nanofibres into yarn. This setup has been designed to separate electrospinning from yarn drafting/twisting in two distinct zones. Three different types of electrospinning systems, i.e. needle, needleless, and needle/needleless hybrid, were utilized to produce nanofibre yarns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanofibres prepared by electrospinning typically have randomly oriented fibrous structure. They have large surface-to-volume (or weight) ratio and excellent porous characteristic, which have shown enormous potential in diverse applications. However, electrospun nanofibres are often prepared in the form of randomly orientated fibrous web, which are fragile and difficult to be tailored in fibrous structures. Herein, we demonstrate a novel yarn electrospinning method which uses a rotating ring collector to convert newly electrospun nanofibres directly into a continuous yarn. The use of ring collector separates the yarn formation from the electrospinning zone. The deposition of later-spun nanofibres to the inner surface of fibrous cone eliminates hooked or curled nanofibres in the final yarn. The effects of polymer concentration and operating parameters on nanofibre and yarn morphology, diameter and the ring collector on yarn twist feature were examined. The nanofibre yarns had a surface twist angle up to 54.4°, and tensile strength as high as 93.6 MPa (elongation at break 242.6%). Increasing twist levels improves tensile strength and strain values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanofibres prepared by electrospinning have shown enormous potential for various applications. They are obtained predominantly in the form of nonwoven fibre webs. The 2-dimensional nonwoven feature and fragility have considerably confined their further processing into fabrics through knitting or weaving. Nanofibre yarns, which are nanofibre bundles with continuous length and a twist feature, show improved tensile strength, offering opportunities for making 3-dimensional fibrous materials with precisely controlled fibrous architecture, porous features and fabric dimensions. Despite a few techniques having been developed for electrospinning nanofibre yarns, they are chiefly based on the needle electrospinning technique, which often has low nanofibre productivity. In this study, we for the first time report a nanofibre yarn electrospinning technique which combines both needle and needleless electrospinning. A rotating intermediate ring collector was employed to directly collect freshly-electrospun nanofibres into a fibrous cone, which was further drawn and twisted into a nanofibre yarn. This novel system was able to produce high tenacity yarn (tensile strength 128.9 MPa and max strain 222.1%) at a production rate of 240 m h-1, with a twist level up to 4700 twists per metre. The effects of various parameters, e.g. position of the electrospinning units, operating conditions and polymer concentration, on nanofibre and yarn production were examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALELow-budget rain collectors for water isotope analysis, such as the `ball-in-funnel type collector' (BiFC), are widely used in studies on stable water isotopes of rain. To date, however, an experimental quality assessment of such devices in relation to climatic factors does not exist. METHODSWe used Cavity Ring-Down Spectrometry (CRDS) to quantify the effects of evaporation on the O-18 values of reference water under controlled conditions as a function of the elapsed time between rainfall and collection for isotope analysis, the sample volume and the relative humidity (RH: 31% and 67%; 25 degrees C). The climate chamber conditions were chosen to reflect the warm and dry end of field conditions that favor evaporative enrichment (EE). We also tested the performance of the BiFC in the field, and compared our H-2/O-18 data obtained by isotope ratio mass spectrometry (IRMS) with those from the Swiss National Network for the Observation of Isotopes in the Water Cycle (ISOT). RESULTSThe EE increased with time, with a 1 increase in the O-18 values after 10days (RH: 25%; 25 degrees C; 35mL (corresponding to a 5mm rain event); p <0.001). The sample volume strongly affected the EE (max. value +1.5 parts per thousand for 7mL samples (i.e., 1mm rain events) after 72h at 31% and 67% RH; p <0.001), whereas the relative humidity had no significant effect. Using the BiFC in the field, we obtained very tight relationships of the H-2/O-18 values (r(2) 0.95) for three sites along an elevational gradient, not significantly different from that of the next ISOT station. CONCLUSIONSSince the chosen experimental conditions were extreme compared with the field conditions, it was concluded that the BiFC is a highly reliable and inexpensive collector of rainwater for isotope analysis. Copyright (c) 2014 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"The Handbook is presented in modular format. Modules will be punched for a standard 3-ring notebook. Modules will be sent as developed or updated."--P. 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One could argue that there are many approaches to site specifically as there are specific sites. Each site has a variety of influences such as visibility and natural and cultural histories. Human impositions that endure do so because of some canniness, some appreciation of how the current will live with the past.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the 1:1 proton-transfer compound from the reaction of L-tartaric acid with the azo-dye precursor aniline yellow [4-(phenylazo)aniline], 4-(phenyldiazenyl)anilinium hydrogen 2R,3R-tartrate C12H12N3+ . C4H6O6- has been determined at 200 K. The asymmetric unit of the compound contains two independent phenylazoanilinium cations and two hydrogen L-tartrate anions. The structure is unusual in that all four phenyl rings of both cations have identical 50% rotational disorder. The two hydrogen L-tartrate anions form independent but similar chains through head-to-tail carboxylic O--H...O~carboxyl~ hydrogen bonds [graph set C7] which are then extended into a two-dimensional hydrogen-bonded sheet structure through hydroxyl O--H...O hydrogen-bonding links. The anilinium groups of the phenyldiazenyl cations are incorporated into the sheets and also provide internal hydrogen-bonding extensions while their aromatic tails layer in the structure without significant interaction except for weak \p--\p interactions [minimum ring centroid separation, 3.844(3) \%A]. The hydrogen L-tartrate residues of both anions have the common short intramolecular hydroxyl O--H...O~carboxyl~ hydogen bonds. This work has provided a solution to the unusual disorder problem inherent in the structure of this salt as well as giving another example of the utility of the hydrogen tartrate in the generation of sheet substructures in molecular assembly processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication we provide the most recent results on RAFT-mediated ring-closing polymerization of diallyldimethylammonium chloride (DADMAC). The polymerization was carried out in aqueous solution employing 2,2′-azobis(2-methylpropionamidine)-dihydrochloride as the free radical initiator and trithiocarbonate RAFT agent (2-{[(dodecylsulfanyl)carbonothioyl sulfanyl]}propanoic acid, DoPAT) as the controlling RAFT agent. The results show that – while the system is not as completely controlled as previously described – it is nevertheless possible to mediate the polymerization of DADMAC and impart some living characteristics onto the system. The initial study on the RAFT-mediated polymerization of DADMAC may have overestimated the degree of livingness within this reaction. However, it is possible – at low conversions – for some living characteristics to be observed, as the evolution of molecular weight with conversion is linear. In addition, polymers with a reasonably narrow polydispersity can be isolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parabolic Trough Concentrators (PTC) are the most proven solar collectors for solar thermal power plants, and are suitable for concentrating photovoltaic (CPV) applications. PV cells are sensitive to spatial uniformity of incident light and the cell operating temperature. This requires the design of CPV-PTCs to be optimised both optically and thermally. Optical modelling can be performed using Monte Carlo Ray Tracing (MCRT), with conjugate heat transfer (CHT) modelling using the computational fluid dynamics (CFD) to analyse the overall designs. This paper develops and evaluates a CHT simulation for a concentrating solar thermal PTC collector. It uses the ray tracing work by Cheng et al. (2010) and thermal performance data for LS-2 parabolic trough used in the SEGS III-VII plants from Dudley et al. (1994). This is a preliminary step to developing models to compare heat transfer performances of faceted absorbers for concentrating photovoltaic (CPV) applications. Reasonable agreement between the simulation results and the experimental data confirms the reliability of the numerical model. The model explores different physical issues as well as computational issues for this particular kind of system modeling. The physical issues include the resultant non-uniformity of the boundary heat flux profile and the temperature profile around the tube, and uneven heating of the HTF. The numerical issues include, most importantly, the design of the computational domain/s, and the solution techniques of the turbulence quantities and the near-wall physics. This simulation confirmed that optical simulation and the computational CHT simulation of the collector can be accomplished independently.