982 resultados para retrograde orbit


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras–the SVMN database– as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ε Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we focus our attention to the expansion of the disturbing function (R) which governs the dynamics of a satellite (natural or artificial) in the Neptune-Triton system. What makes this problem quite unusual, is the fact that a small inner satellite can be strongly disturbed by Triton which is moving in a highly inclined and retrograde orbit. These features are unique in our solar system. Although a lot of retrograde satellites are currently known, all of them have negligible mass and the), do not offer almost any perturbation on the others satellites. However, in the case of the inner satellites of Neptune, Triton is an interesting exception. In a highly inclined orbit, the perturbation it exerts on the neighbouring satellites of Neptune cannot be ignored even for the present scenario. However, in the future, this perturbation will be much more important because due to the tides, the orbit of Triton is contracting, whereas the semi major axes of the remaining inner satellites of Neptune will remain almost unaffected by the tides. In this work we first obtain the disturbing function in the retrograde case. After that, we generalize R for arbitrary inclination. Several numerical tests are presented and a possible future case of resonant configuration is briefly discussed as well. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrodynamic bare tether is shown to allow carrying out scientific observations very close to Jupiter, for exploration of its surface and subsurface, and ionospheric and atmospheric in-situ measurements. Starting at a circular equatorial orbit of radius about 1.3/1.4 times the Jovian radius, continuous propellantless Lorentz drag on a thin-tape tether in the 1-5 km length range would make a spacecraft many times as heavy as the tape slowly spiral in, over a period of many months, while generating power at a load plugged in the tether circuit for powering instruments in science data acquisition and transmission. Lying under the Jovian radiation belts, the tape would avoid the most severe problem facing tethers in Jupiter, which are capable of producing both power and propulsion but, operating slowly, could otherwise accumulate too high a radiation dose . The tether would be made to spin in its orbit to keep taut; how to balance the Lorentz torque is discussed. Constraints on heating and bowing are also discussed, comparing conditions for prograde versus retrograde orbits. The system adapts well to the moderate changes in plasma density and motional electric field through the limited radial range in their steep gradients near Jupiter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the effectiveness of combined ureteroscopic holmium YAG lithotripsy for renal calculi associated with ipsilateral ureteral stones. Materials and Methods: Between August 2002 and March 2007, retrograde flexible ureteroscopic stone treatment was attempted in 351 cases. Indication for treatment was concurrent symptomatic ureteral stones in 63 patients (group I). Additional operative time and perioperative complication rates were compared to a group of 39 patients submitted to ureteroscopic treatment for ureteral calculi exclusively (group II). Results: Mean ureteral stone size was 8.0 +/- 2.6 mm and 8.1 +/- 3.4 mm for groups I and II, respectively. Mean operative time for group I was 67.9 +/- 29.5 minutes and for group 2 was 49.3 +/- 13.2 minutes (p < 0.001). Flexible ureteroscopic therapy for renal calculi increased 18 minutes in the mean operative time. The overall complication rate was 3.1% and 2.5% for groups I and II, respectively (p = 0.87). Mean renal stone size was 10.7 +/- 6.4 mm, overall stone free rate in group I was 81%. However, considering only patients with renal stones smaller than 15 mm, the stone free rate was 88%. Successful treatment occurred in 81% of patients presenting lower pole stones, but only 76% of patients with multiple renal stones became stone free. As expected, stone free rate showed a significant negative correlation with renal stone size (p = 0.03; r = -0.36). Logistic regression model indicated an independent association of renal stones smaller than 15 mm and stone free rate (OR = 13.5; p = 0.01). Conclusion: Combined ureteroscopic treatment for ureteral and ipsilateral renal calculi is a safe and attractive option for patients presenting for symptomatic ureteral stone and ipsilateral renal calculi smaller than 15 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass M(p) = 3.47 +/- 0.38 M(Jup), a radius R(p) = 1.31 +/- 0.18 R(Jup), and a density rho(p) = 2.2 +/- 0.8 g cm(-3). It orbits a G9V star with a mass M(*) = 0.95 +/- 0.15 M(circle dot), a radius R(*) = 1.00 +/- 0.13 R(circle dot), and a rotation period P(rot) = 5.4 +/- 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the RossiterMcLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity psi = 20 degrees +/- 20 degrees +/- (sky-projected value lambda = -10 degrees +/- 20 degrees), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. Aims. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 +/- 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. Methods. We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. Results. We derive a radius of the planet of 0.97 +/- 0.07 R(Jup) and a mass of 2.75 +/- 0.16 M(Jup). The bulk density,rho(p) = 3.70 +/- 0.83 g cm(-3), is similar to 2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M(circle plus) of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau(circ) > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a ""hot Jupiter"" planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high (7)Li abundance. While the light curve indicates a much higher level of activity than, e. g., the Sun, there is no sign of activity spectroscopically in e. g., the [Ca II] H&K lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetoresistance measurements were performed on an n-type PbTe/PbEuTe quantum well and weak antilocalization effects were observed. This indicates the presence of spin orbit coupling phenomena and we showed that the Rashba effect is the main mechanism responsible for this spin orbit coupling. Using the model developed by Iordanskii et al., we fitted the experimental curves and obtained the inelastic and spin orbit scattering times. Thus we could compare the zero field energy spin-splitting predicted by the Rashba theory with the energy spin-splitting obtained from the analysis of the experimental curves. The final result confirms the theoretical prediction of strong Rashba effect on IV-VI based quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic dynamical systems with two or more attractors lying on invariant subspaces may, provided certain mathematical conditions are fulfilled, exhibit intermingled basins of attraction: Each basin is riddled with holes belonging to basins of the other attractors. In order to investigate the occurrence of such phenomenon in dynamical systems of ecological interest (two-species competition with extinction) we have characterized quantitatively the intermingled basins using periodic-orbit theory and scaling laws. The latter results agree with a theoretical prediction from a stochastic model, and also with an exact result for the scaling exponent we derived for the specific class of models investigated. We discuss the consequences of the scaling laws in terms of the predictability of a final state (extinction of either species) in an ecological experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the chemical formula A(2)BB'O(6), where the B' atom has a 4d(1) or 5d(1) electronic configuration and forms a face-centered-cubic lattice. The combination of the triply degenerate t(2g) orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment j=3/2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the [110] direction, and a nonmagnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two-sublattice structure described by the ordering wave vector Q=2 pi(001). We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a nonmagnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the intrinsic spin Hall effect in two-dimensional electron gases in quantum wells with two subbands, where a new intersubband-induced spin-orbit coupling is operative. The bulk spin Hall conductivity sigma(z)(xy) is calculated in the ballistic limit within the standard Kubo formalism in the presence of a magnetic field B and is found to remain finite in the B=0 limit, as long as only the lowest subband is occupied. Our calculated sigma(z)(xy) exhibits a nonmonotonic behavior and can change its sign as the Fermi energy (the carrier areal density n(2D)) is varied between the subband edges. We determine the magnitude of sigma(z)(xy) for realistic InSb quantum wells by performing a self-consistent calculation of the intersubband-induced spin-orbit coupling.