1000 resultados para repleta group
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The occurrence, number of insertion sites and antisense RNA expression of micropia transposable element were studied in 26 species that belong to three subgroups (mercatorum, mulleri and hydei) of repleta group of Drosophila. Under high specific PCR, micropia sequences were detected in 11 species, but under less stringent condition, this retrotransposon was detected in all species. The widespread distribution of micropia suggests that this element was already present at the common ancestor of the repleta group of Drosophila. Southern blot analysis showed a variation from 0 to 17 different insertion sites and the occurrence of male-specific sequences. We found that the expression of the 1.0 kb micropia antisense RNA is variable among the species and tissues (soma and testis), which suggests that more than one mechanism regulates transposition in these species. Variation of amplification by PCR and of antisense RNA expression, as well as divergence of nucleotide sequences among the species allow us to suggest that at least two subfamilies of micropia transposable element are harbored by the genome of this species group.
Resumo:
Although the retrotransposon copia has been studied in the melanogaster group of Drosophila species, very little is known about copia dynamism and evolution in other groups. We analyzed the occurrence and heterogeneity of the copia 5' LTR-ULR partial sequence and their phylogenetic relationships in 24 species of the repleta group of Drosophila. PCR showed that copia occurs in 18 out of the 24 species evaluated. Sequencing was possible in only eight species. The sequences showed a low nucleotide diversity, which suggests selective constraints maintaining this regulatory region over evolutionary time. on the contrary, the low nucleotide divergence and the phylogenetic relationships between the D. willistoni/Zaprionus tuberculatus/melanogaster species subgroup suggest horizontal transfer. Sixteen transcription factor binding sites were identified in the LTR-ULR repleta and melanogaster consensus sequences. However, these motifs are not homologous, neither according to their position in the LTR-ULR sequences, nor according to their sequences. Taken together, the low motif homologies, the phylogenetic relationship and the great nucleotide divergence between the melanogaster and repleta copia sequences reinforce the hypothesis that there are two copia families.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study the Minos element was analyzed in 26 species of the repleta group and seven species of the saltans group of the genus Drosophila. The PCR and Southern blot analysis showed a wide occurrence of the Minos transposable element among species of the repleta and the saltans groups and also a low number of insertions in both genomes. Three different analyses, nucleotide divergence, historical associations, and comparisons between substitution rates (d(N) and d(S)) of Minos and Adh host gene sequences, suggest the occurrence of horizontal transfer between repleta and saltans species. These data reinforce and extend the Arca and Savakis [Genetica 108 (2000) 263] results and suggest five events of horizontal transfer to explain the present Minos distribution: between D. saltans and the ancestor of the mulleri and the mojavensis clusters; between D. hydei and the ancestor of the mulleri and the mojavensis clusters; between D. mojavensis and D. aldrichi; between D. buzzatii and D. serido; and between D. spenceri and D. emarginata. An alternative explanation would be that repeated events of horizontal transfer involving D. hydei, which is a cosmopolitan species that diverged from the others repleta species as long as 14 Mya, could have spread Minos within the repleta group and to D. saltans. The data presented in this article support a model in which distribution of Minos transposon among Drosophila species is determined by horizontal transmission balanced by vertical inactivation and extinction. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We analyzed the ITS-1 spacer region of the rDNA in Drosophila mulleri and D. arizonae, two sibling species belonging to the mulleri complex (repleta group) and in hybrids obtained in both cross directions. In spite of several previous studies showing the incompatibility of crosses involving D. arizonae females and D. mulleri males, we were able to obtain hybrids in this direction. Complete ITS-1 region was amplified using primers with homology at the 3'-end of the 18S rDNA and the 5'-end of the 5.8S rDNA genes. Our data demonstrated that D. mulleri and D. arizonae can be differentiated as they present a difference in length for the ITS-1 region. The amplified fragment for this region in D. mulleri has a length of 600 bp, whereas in D. arizonae this fragment is about 500 bp. It was also observed that male and female hybrids obtained in both cross directions present two amplified fragments, confirming the location of the ribosomal cistrons in the X chromosomes and microchromosomes of both parental species.
Resumo:
Drosophila mulleri (MU) and D. arizonae (AR) are cryptic species of the mulleri complex, mulleri subgroup, repleta group. Earlier cytogenetic studies revealed that these species have different regulatory mechanisms of nucleolar organizing activity. In these species, nucleolar organizing regions are found in both the X chromosome and the microchromosome. In the salivary glands of hybrids between MU females and AR males, there is an interspecific dominance of the regulatory system of the D. arizonae nucleolar organizer involving, in males, amplification and activation of the nucleolar organizer from the microchromosome. The authors who reported these findings obtained hybrids only in that cross-direction. More recently, hybrids in the opposite direction, i.e., between MU males and AR females, have been obtained. The purpose of the present study was to evaluate, in these hybrids, the association of the nucleoli with the chromosomes inherited from parental species in order to cytogenetically confirm the dominance patterns previously described. Our results support the proposed dominance of the AR nucleolar organizer activity over that of MU, regardless of cross-direction. ©FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)