981 resultados para regional ocean model, global ocean model, North Sea, HAMSOM, MPIOM, marine downscaling
Resumo:
Assessment of marine downscaling of global model simulations to the regional scale is a prerequisite for understanding ocean feedback to the atmosphere in regional climate downscaling. Major difficulties arise from the coarse grid resolution of global models, which cannot provide sufficiently accurate boundary values for the regional model. In this study, we first setup a stretched global model (MPIOM) to focus on the North Sea by shifting poles. Second, a regional model (HAMSOM) was performed with higher resolution, while the open boundary values were provided by the stretched global model. In general, the sea surface temperatures (SSTs) in the two experiments are similar. Major SST differences are found in coastal regions (root mean square difference of SST is reaching up to 2°C). The higher sea surface salinity in coastal regions in the global model indicates the general limitation of this global model and its configuration (surface layer thickness is 16 m). By comparison, the advantage of the absence of open lateral boundaries in the global model can be demonstrated, in particular for the transition region between the North Sea and Baltic Sea. On long timescales, the North Atlantic Current (NAC) inflow through the northern boundary correlates well between both model simulations (R~0.9). After downscaling with HAMSOM, the NAC inflow through the northern boundary decreases by ~10%, but the circulation in the Skagerrak is stronger in HAMSOM. The circulation patterns of both models are similar in the northern North Sea. The comparison suggests that the stretched global model system is a suitable tool for long-term free climate model simulations, and the only limitations occur in coastal regions. Regarding the regional studies focusing on the coastal zone, nested regional model can be a helpful alternative.
Resumo:
Spatial patterns in pelagic biodiversity are the result of factors acting from a global to a local scale. The global patterns have been studied intensively using taxa such as foraminifera and euphausiids. However, these studies do not allow direct comparisons of neritic and oceanic regions or examination of relationships between local and regional patterns of pelagic diversity. Here we present a map of the diversity of calanoid copepods, a key planktonic group, summarising 40 yr of continuous monthly investigations in the North Atlantic and North Sea. The high number of samples (168 162) allowed mesoscale patterns in diversity to be detected for the first time at an ocean-basin level. Our results demonstrate pronounced local spatial variability in planktonic diversity and refine previous global studies at a lower resolution. They form a baseline at which long-term changes in planktonic diversity can be better assessed and ecosystem management plans implemented.
Resumo:
Developmental stages of 22 species representing 16 genera of agonid fishes occurring in the northeastern Pacific Ocean from San Francisco Bay to the Arctic Ocean are presented. Three of these species also occur in the North Atlantic Ocean. Larval stages of nine species are described for the first time. Additional information or illustrations intended to augment original descriptions are provided for eight species. Information on five other species is provided from the literature for comparative purposes. The primary objective of this guide is to present taxonomic characters to help identify the early life history stages of agonid fishes in field collections. Meristic, morphometric, osteological, and pigmentation characters are used to identify agonid larvae. Meristic features include numbers of median-fin elements, pectoral-fin rays, dermal plates, and vertebrae. Eye diameter, body depth at the pectoral-fin origin, snout to first dorsal-fin length, and pectoral-fin length are the most useful morphological characters. Presence, absence, numbers, and/or patterns of dermal plates in lateral rows or on the ventral surface of the gut are also useful. Other important characters are the presence, absence, numbers, and ornamentation of larval head spines. Lastly, distinct pigmentation patterns are often diagnostic. The potential utility of larval characters in phylogenetic analysis of the family Agonidae is discussed. (PDF file contains 92 pages.)
Resumo:
The North Sea ecosystem has recently undergone dramatic changes, observed as altered biomass of individual species spanning a range of life forms from algae to birds, with evidence for an approximate doubling in the abundance of both phytoplankton and benthos as part of a regime shift after 1987. Remarkably, these changes, in part recorded in the Phytoplankton Colour Index of the Continuous Plankton Recorder (CPR) survey, are notable as episodic shifts occurring in 1988/89 and 1998 imposed on a gradual decadal trend. These biological events are shown to be a response to coincident changes in oceanic input and water temperature. Geostrophic transports have been calculated from a hydrographic section across the Rockall Trough, and a time series of seasurface temperature derived from satellite observations. The 2 pulses of oceanic incursion into the North Sea in circa 1988 and 1998 coincided with strong northward advection of anomalously warm water at the edge of the continental shelf.
Resumo:
The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.
Resumo:
A regional ocean general circulation model of the Mediterranean is used to study the climate of the Last Glacial Maximum. The atmospheric forcing for these simulations has been derived from simulations with an atmospheric general circulation model, which in turn was forced with surface conditions from a coarse resolution earth system model. The model is successful in reproducing the general patterns of reconstructed sea surface temperature anomalies with the strongest cooling in summer in the northwestern Mediterranean and weak cooling in the Levantine, although the model underestimates the extent of the summer cooling in the western Mediterranean. However, there is a strong vertical gradient associated with this pattern of summer cooling, which makes the comparison with reconstructions complicated. The exchange with the Atlantic is decreased to roughly one half of its present value, which can be explained by the shallower Strait of Gibraltar as a consequence of lower global sea level. This reduced exchange causes a strong increase of salinity in the Mediterranean in spite of reduced net evaporation.
Resumo:
This paper focuses on the parallelization of an ocean model applying current multicore processor-based cluster architectures to an irregular computational mesh. The aim is to maximize the efficiency of the computational resources used. To make the best use of the resources offered by these architectures, this parallelization has been addressed at all the hardware levels of modern supercomputers: firstly, exploiting the internal parallelism of the CPU through vectorization; secondly, taking advantage of the multiple cores of each node using OpenMP; and finally, using the cluster nodes to distribute the computational mesh, using MPI for communication within the nodes. The speedup obtained with each parallelization technique as well as the combined overall speedup have been measured for the western Mediterranean Sea for different cluster configurations, achieving a speedup factor of 73.3 using 256 processors. The results also show the efficiency achieved in the different cluster nodes and the advantages obtained by combining OpenMP and MPI versus using only OpenMP or MPI. Finally, the scalability of the model has been analysed by examining computation and communication times as well as the communication and synchronization overhead due to parallelization.
Resumo:
The air-sea exchange of two legacy persistent organic pollutants (POPs), γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization), wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009). The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.