922 resultados para regime shift
Resumo:
Data collected from an annual groundf ish survey of the eastern Bering Sea shelf from 1975 to 2002 were used to estimate biomass and biodiversity indexes for two fish guilds: f latfish and roundfish. Biomass estimates indicated that several species of f latfish (particularly rock sole, arrowtooth flounder, and f lathead sole), several large sculpins (Myoxocephalus spp.), bigmouth (Hemitripterus bolini), and skates (Bathyraja spp.) had increased. Declining species included several f latfish species and many smaller roundfish species of sculpins, eelpouts (Lycodes spp.), and sablefish (Anoplopoma fimbria). Biodiversity indexes were calculated by using biomass estimates for both guilds from 1975 through 2002 within three physical domains on the eastern Bering Sea shelf. Biodiversity trends were found to be generally declining within the roundfish guild and generally increasing within the f latfish guild and varied between inner, middle, and outer shelf domains. The trends in biodiversity indexes from this study correlated strongly with the regime shift reported for the late 1970s and 1980s.
Resumo:
Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each g rowth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2 smolts was significantly higher than age-1. smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10−18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean reg ime shift. During 1977−2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955−1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977−2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.
Resumo:
To discover how a lake converts from a turbid state to clean state, and what drives this process, we constructed controlled enclosure ecosystems and used the ecological remediation method to force ecosystems to convert from the turbid state to the clean state. Our results show that the driving forces include temperature., macrophyte, silver carp and mussel, which form a combined force to drive the controlled ecosystem to switch. There is a threshold existing in treated enclosure ecosystem during the conversion from turbid to clean state. When TP <0.09 mg.L-1, Chl-a <0.036 mg.L-1, transparency >62 cm, TN <2.15 mg.L-1, CODMn <13.7 mg.L-1, tubidity <10, and the number of algal cells <10(6) cells.L-1, the treated ecosystem changes sharply from turbid to clean state. The conversion process can be divided into three phases: turbid state, clean-turbid transitional state as well as clean state, and described with the power function Y = a*X-b (where Y is water parameter, X is time, a and b are constants), which indicates that the shift in the enclosure ecosystem from turbid to clean state is discontinuous.
A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery
Resumo:
After 1987, Phytoplankton Colour (a visual estimate of chlorophyll) measured on samples taken by the continuous plankton recorder (CPR) in the North Sea increased substantially, both in level and seasonal extent, compared to earlier years since 1946. Many species of phytoplankton and zooplankton showed marked changes in abundance at about the same time. These events coincided with a large increase in catches of the western stock of the horse mackerel (Trachurus trachurus L.) in the northern North Sea reflecting a northerly expansion of the stock along the shelf edge from the Bay of Biscay to the North Sea after 1987. Using a 3D hydrodynamic model, with input from measured wind parameters, monthly transport of oceanic water into the North Sea has been calculated for the period 1976–1994, integrated for a section from Orkney to Shetland to Norway. A substantial increase in oceanic inflow occurred in the winter months, December to March, from 1988. Higher sea surface temperatures were also measured after 1987 especially in spring and summer months. These biological and physical events may be a response to observed changes in pressure distribution over the North Atlantic. From 1988 onwards, the North Atlantic Oscillation (NAO) index, the pressure difference between Iceland and the Azores, increased to the highest positive level observed in this century. Positive NAO anomalies are associated with stronger and more southerly tracks of the westerly winds and higher temperatures in western Europe. These changing wind distributions may have led to an increase in the northerly advection of water along the western edge of the European shelf and may have assisted the migration of the horse mackerel. This study is possibly a unique demonstration of a correlation between three different trophic levels of a marine ecosystem and hydrographic and atmospheric events at decadal and regional scales. The results emphasise the importance of maintaining into the future long term programmes such as the CPR.
Resumo:
Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.
Resumo:
There is accumulating evidence suggesting that a regime shift occurred in the North Atlantic during the mid-eighties. This shift has been reported primarily from Continuous Plankton Recorder (CPR) data as a stepwise change in plankton abundance and copepod community structure. Here we analyse the CPR data for appendicularian abundance to show that a similar stepwise increase occurred in the abundance of appendicularians during the mid-eighties. Furthermore, we compare these results to data recorded by other zooplankton time series programmes to show that a similar abrupt increase in appendicularian abundance during the mid-early eighties has also been recorded in other areas. The fact that such a change occurred at locations so distant apart as Helgoland Roads in the North Sea or the White Sea in the Arctic suggests that these changes have a global origin. The strong dependence of appendicularian phenology with temperature points out to direct links to global climate change.
Resumo:
During the 1980s, a rapid increase in the Phytoplankton Colour Index (PCI), a semiquantitative visual estimate of algal biomass, was observed in the North Sea as part of a regionwide regime shift. Two new data sets created from the relationship between the PCI and SeaWiFS chlorophyll a (Chl a) quantify differences in the previous and current regimes for both the anthropogenically affected coastal North Sea and the comparatively unaffected open North Sea. The new regime maintains a 13% higher Chl a concentration in the open North Sea and a 21% higher concentration in coastal North Sea waters. However, the current regime has lower total nitrogen and total phosphorus concentrations than the previous regime, although the molar N: P ratio in coastal waters is now well above the Redfield ratio and continually increasing. Besides becoming warmer, North Sea waters are also becoming clearer (i.e., less turbid), thereby allowing the normally light-limited coastal phytoplankton to more effectively utilize lower concentrations of nutrients. Linear regression analyses indicate that winter Secchi depth and sea surface temperature are the most important predictors of coastal Chl a, while Atlantic inflow is the best predictor of open Chl a; nutrient concentrations are not a significant predictor in either model. Thus, despite decreasing nutrient concentrations, Chl a continues to increase, suggesting that climatic variability and water transparency may be more important than nutrient concentrations to phytoplankton production at the scale of this study.
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Resumo:
In the two most recent decades, more frequent drought struck southern China during autumn, causing an unprecedented water crisis. We found that the increasing autumn drought is largely attributed to an ENSO regime shift. Compared to traditional eastern-Pacific (EP) El Niño, central-Pacific (CP) El Niño events have occurred more frequently, with maximum sea surface temperature anomalies located near the dateline. Southern China usually experiences precipitation surplus during the autumn of EP El Niño years, while the CP El Niño tends to produce precipitation deficits. Since the CP El Niño has occurred more frequently while EP El Niño has become less common after the early 1990s, there has been a significant increase in the frequency of autumn drought. This has implications for increasing precipitation shortages over southern China in a warming world, in which CP El Niño events have been suggested to become more common.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Resumo:
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Resumo:
Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.