956 resultados para rainfall-runoff


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban rainfall-runoff residuals contain metals such as Cr, Zn, Cu, As, Pb and Cd and are thus reasonable candidates for treatment using Portland cement-based solidification-stabilization (S/S). This research is a study of S/S of urban storm water runoff solid residuals in Portland cement with quicklime and sodium bentonite additives. The solidified residuals were analyzed after 28 days of hydration time using X-ray powder diffraction (XRD) and solid-state Si-29 nuclear magnetic resonance (NMR) spectroscopy. X-ray diffraction (XRD) results indicate that the main cement hydration products are ettringite, calcium hydroxide and hydrated calcium silicates. Zinc hydroxide and lead and zinc silicates are also present due to the reactions of the waste compounds with the cement and its hydration products. Si-29 NMR analysis shows that the coarse fraction of the waste apparently does not interfere with cement hydration, but the fine fraction retards silica polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow cover is an important control in mountain environments and a shift of the snow-free period triggered by climate warming can strongly impact ecosystem dynamics. Changing snow patterns can have severe effects on alpine plant distribution and diversity. It thus becomes urgent to provide spatially explicit assessments of snow cover changes that can be incorporated into correlative or empirical species distribution models (SDMs). Here, we provide for the first time a with a lower overestimation comparison of two physically based snow distribution models (PREVAH and SnowModel) to produce snow cover maps (SCMs) at a fine spatial resolution in a mountain landscape in Austria. SCMs have been evaluated with SPOT-HRVIR images and predictions of snow water equivalent from the two models with ground measurements. Finally, SCMs of the two models have been compared under a climate warming scenario for the end of the century. The predictive performances of PREVAH and SnowModel were similar when validated with the SPOT images. However, the tendency to overestimate snow cover was slightly lower with SnowModel during the accumulation period, whereas it was lower with PREVAH during the melting period. The rate of true positives during the melting period was two times higher on average with SnowModel with a lower overestimation of snow water equivalent. Our results allow for recommending the use of SnowModel in SDMs because it better captures persisting snow patches at the end of the snow season, which is important when modelling the response of species to long-lasting snow cover and evaluating whether they might survive under climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the simulation of flood risks originating from the overtopping of river banks is well covered within continuously evaluated programs to improve flood protection measures, flash flooding is not. Flash floods are triggered by short, local thunderstorm cells with high precipitation intensities. Small catchments have short response times and flow paths and convective thunder cells may result in potential flooding of endangered settlements. Assessing local flooding and pathways of flood requires a detailed hydraulic simulation of the surface runoff. Hydrological models usually do not incorporate surface runoff at this detailedness but rather empirical equations are applied for runoff detention. In return 2D hydrodynamic models usually do not allow distributed rainfall as input nor are any types of soil/surface interaction implemented as in hydrological models. Considering several cases of local flash flooding during the last years the issue emerged for practical reasons but as well as research topics to closing the model gap between distributed rainfall and distributed runoff formation. Therefore, a 2D hydrodynamic model, depth-averaged flow equations using the finite volume discretization, was extended to accept direct rainfall enabling to simulate the associated runoff formation. The model itself is used as numerical engine, rainfall is introduced via the modification of waterlevels at fixed time intervals. The paper not only deals with the general application of the software, but intends to test the numerical stability and reliability of simulation results. The performed tests are made using different artificial as well as measured rainfall series as input. Key parameters of the simulation such as losses, roughness or time intervals for water level manipulations are tested regarding their impact on the stability.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The authors would like to thank Jonathan Dick, Josie Geris, Jason Lessels, and Claire Tunaley for data collection and Audrey Innes for lab sample preparation. We also thank Christian Birkel for discussions about the model structure and comments on an earlier draft of the paper. Climatic data were provided by Iain Malcolm and Marine Scotland Fisheries at the Freshwater Lab, Pitlochry. Additional precipitation data were provided by the UK Meteorological Office and the British Atmospheric Data Centre (BADC).We thank the European Research Council ERC (project GA 335910 VEWA) for funding the VeWa project.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traffic and tillage effects on runoff and crop performance on a heavy clay soil were investigated over a period of 4 years. Tillage treatments and the cropping program were representative of broadacre grain production practice in northern Australia, and a split-plot design used to isolate traffic effects. Treatments subject to zero, minimum, and stubble mulch tillage each comprised pairs of 90-m 2 plots, from which runoff was recorded. A 3-m-wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the total surface area of the other received a single annual wheeling treatment from a working 100-kW tractor. Rainfall/runoff hydrographs demonstrate that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still maintained in large and intense rainfall events on wet soil. Mean annual runoff from wheeled plots was 63 mm (44%) greater than that from controlled traffic plots, whereas runoff from stubble mulch tillage plots was 38 mm (24%) greater than that from zero tillage plots. Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from wheeled stubble mulch tilled plots, representing conventional cropping practice, was more than 100 mm greater than that from controlled traffic zero tilled plots, representing best practice. This increased infiltration was reflected in an increased yield of 16% compared with wheeled stubble mulch. Minimum tilled plots demonstrated a characteristic midway between that of zero and stubble mulch tillage. The results confirm that unnecessary energy dissipation in the soil during the traction process that normally accompanies tillage has a major negative effect on infiltration and crop productivity. Controlled traffic farming systems appear to be the only practicable solution to this problem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dryland agriculture in Cabo Verde copes with steep slopes, inadequate practices, irregular intense rain, recurrent droughts, high runoff rates, severe soil erosion and declining fertility, leading to the inefficient use of rainwater. Maize and beans occupy N80% of the arable land in low-input, low-yielding subsistence farming. Three collaborative field trialswere conducted in different agroecological zones to evaluate the effects ofwater-conservation techniques (mulching of crop residue, a soil surfactant and pigeon-pea hedges) combinedwith organic amendments (compost and animal or green manure) on runoff and soil loss. During the 2011 and 2012 rainy seasons, three treatments and one control (traditional practice) were applied to 44- and 24-m2 field plots. A local maize variety and two types of beanswere planted. Runoff and suspended sedimentswere collected and quantified after each daily erosive rainfall. Runoff occurred for rainfalls≥50mm(slope b10%, loamy Kastanozem),≥60mm(slope≤23%, silt–clay–loam Regosol) and≥40mm(slope≤37%, sandy loam Cambisol). Runoffwas significantly reduced only with themulch treatment on the slope N10% and in the treatment of surfactant with organic amendment on the slope b10%. Soil loss reached 16.6, 5.1, 6.6 and 0.4 Mg ha−1 on the Regosol (≤23% slope) for the control, surfactant, pigeon-pea and mulch/pigeon-pea (with organic amendment) treatments, respectively; 3.2, 0.9, 1.3 and 0.1 Mg ha−1 on the Cambisol (≤37% slope) and b0. 2Mg ha−1 for all treatments and control on the Kastanozem(b10% slope). Erosion was highly positively correlated with runoff. Mulch with pigeon-pea combinedwith an organic amendment significantly reduced runoff and erosion fromagricultural fields on steep slopes, contributing to improved use of rainwater at the plot level. Sustainable land management techniques, such as mulching with pigeon-pea hedges and an organic amendment, should be advocated and promoted for the semiarid hillsides of Cabo Verde prone to erosion to increase rainwater-use and to prevent further soil degradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work aimed to measure and analyze total rainfall (P), rainfall intensity and five-day antecedent rainfall effects on runoff (R); to compare measured and simulated R values using the Soil Conservation Service Curve Number method (CN) for each rainfall event; and to establish average R/P ratios for observed R values. A one-year (07/01/96 to 06/30/97) rainfall-runoff data study was carried out in the Capetinga watershed (962.4 ha), located at the Federal District of Brazil, 47° 52' longitude West and 15° 52' latitude South. Soils of the watershed were predominantly covered by natural vegetation. Total rainfall and runoff for the period were 1,744 and 52.5 mm, respectively, providing R/P of 3% and suggesting that watershed physical characteristics favored water infiltration into the soil. A multivariate regression analysis for 31 main rainfall-runoff events totaling 781.9 and 51.0 mm, respectively, indicated that the amount of runoff was only dependent upon rainfall volume. Simulated values of total runoff were underestimated about 15% when using CN method and an area-weighted average of the CN based on published values. On the other hand, when average values of CN were calculated for the watershed, total runoff was overestimated about 39%, suggesting that CN method shoud be used with care in areas under natural vegetation.