998 resultados para radiolarians


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach for analyzing the turnover rates of Cretaceous radiolarians recorded in pelagic sequences of western Tethys, The analysis of major extinction-radiation events and the fluctuation of diversity are compared with major paleoceanographic events and variation of diversity in dinoflagellates, calcareous nannoplankton and ammonites. There is an extraordinary correlation between biotic changes and sea level changes, temperatures, O, C and Sr isotopes, phosphorus accumulation rates and anoxic episodes. This reveals a predominantly abiotic control on the evolution of radiolarians. The rate of turnover and the diversity through time of two major orders of radiolarians (nassellarians and spumellarians) exhibits (1) the quasi-parallelism of their diversity curves, excluding a direct competition between them, (2) greater resistance of spumellarians to extinction during the early stage of extinction intervals and (3) a stronger post-extinction recovery of nassellarians. Evolutionary rates of radiolarians can be a good means of monitoring global environmental changes and allowing us to understand more clearly the relationship between plankton evolution, climate and pale oceanographic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of radiolarite ages of supraophiolitic rocks date the expansion age of oceanic crust. Radiolarites from the Gets nappe, a decollement cover nappe, provide the means of dating selected localities of outcropping oceanic crust based on their radiolarian faunas. Some studied samples from the ophiolitic melange (Perri re series) have a very well preserved and highly diverse radiolarian fauna of biochronological significance. The age of the radiolarites is established by correlation with the biozonation of Baumgartner et al. (1995b), which indicates a Bathonian age for the oldest radiolarian assemblages. Accordingly, these radiolarites represent remains of the oldest sediments recorded after the opening of the Piemont-Ligurian Ocean. This age is in agreement with those recently established by isotopic methods (166 +/- 1 Ma U-Pb and 165.9 +/- 2.2 Ma Ar-40/Ar-39) in the associated gabbros from the ophiolitic melange. The isotopic age and paleontological results are important because they represent the oldest dating of the oceanic crust of the Piemont-Ligurian Ocean, proving a Late Bajocian-Early Bathonian age for the oceanization in the western Tethys. The systematic part presents a complete Bathonian radiolarian assemblage from two of the best preserved samples; the illustrated assemblage contains 180 species attributed to 66 genera (44 nassellarians, 22 spumellarians and 1 entactinarian). Twenty new species and three new genera (Helvetocapsa, Plicaforacapsa and Theocapsomella) are formally described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 26 1, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 26 1, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud (1992) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been.caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core-samples from wells and an outcrop located on the Voronesh Anticline in the southeastern part of the Russian Platform contain Late Cretaceous radiolaria. 83 species are described and illustrated (SEM and transmitted light images) from Santonian-early Campanian deposits, and two assemblages are distinguished. The older assemblage with Alievium gallowayi, Archaeospongoprunum bipartitum, Archaeospongoprunum. cf. A. salumi as well as other less age-diagnostic taxa, is interpreted as Santonian correlative with the Euchitonia santonica-Alievium gallowayi Assemblage Zone of the Moscow Basin (Vishnevskaya 1993). The younger assemblage, of Santonian - early Campanian age, contains Patulibracchium cf. P. davisi, Crucella irwini, Cryptamphorella sphaerica, Praeconocaryomma californiensis, Dictyomitra lamellicostata among other species and is correlative with the Orbiculiforma quadrata-Lithostrobus rostovtsevi Assemblage Zone of the Moscow Basin. In terms of inter-regional faunal comparisons, both of the Voronesh Anticline radiolarian assemblages demonstrate relatively close affinities to coeval rocks from the Volga River region, but less similarity to the assemblages from the Moscow Basin. Only a few of the common endemic species of Siberian assemblages occur in our samples. On an inter-regional level, the radiolarian assemblages described herein have similarities with assemblages reported from Japan and California. Index-species characteristic for the Santonian-Campanian radiolarian biozonations of the Atlantic and Pacific Oceans are not found in our collection. However, the presence of many cosmopolitan species known from the European Platform, Japan and California suggests a marine connection between the Voronesh Anticline region, the western Atlantic and eastern Tethys during Santonian-Early Campanian time.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the circum-Pacific ophiolitic belts, when no other biogenic constituents are found, radiolarians have the potential to provide significant biostratigraph- ic information. The Santa Rosa Accretionary Complex, which crops out in several half-windows (Carrizal, Sitio Santa Rosa, Bahia Nancite, Playa Naranjo) along the south shores of the Santa Elena Peninsula in northwestern Costa Rica, is one of these little-known ophiolitic mélanges. It contains various oceanic assemblages of alkaline basalt, radiolarite and polymictic breccias. The radiolarian biochronology presented in this work is mainly based by correlation on the biozonations of Carter et al. (2010), Baumgartner et al. (1995b), and O'Dogherty (1994) and indicate an Early Jurassic to early Late Cretaceous (early Pliensbachian to earliest Turonian) age for the sediments associated with oceanic basalts or recovered from blocks in breccias or megabreccias. The 19 illus- trated assemblages from the Carrizal tectonic window and Sitio Santa Rosa contain in total 162 species belonging to 65 genera. The nomenclature of tecton- ic units is the one presented by (Baumgartner and Denyer, 2006). This study brings to light the Early Jurassic age of a succession of radiolarite, which was previously thought to be of Cretaceous age, intruded by alkaline basalts sills (Unit 3). The presence of Early Jurassic large reworked blocks in a polymictic megabreccia, firstly reported by De Wever et al. (1985) is confirmed (Unit 4). Therefore, the alkaline basalt associated with the radiolarites of these two units (and maybe also Units 5 and 8) could be of Jurassic age. In the Carrizal tectonic window, Middle to early Late Jurassic radiolarian chert blocks associ- ated with massive tholeitic basalts and Early Cretaceous brick-red ribbon cherts overlying pillow basalts are interpreted as fragments of a Middle Jurassic oceanic basement accreted to an Early Cretaceous oceanic Plate, in an intra-oceanic subduction context. Whereas, the knobby radiolarites and black shales of Playa Carrizal are indicative of a shallower middle Cretaceous paleoenvironment. Other remnants of this oceanic basin are found in Units 2, 6, and 7, which documented the rapid approach of the depocentre to a subduction trench during the late Early Cretaceous (Albian-Cenomanian), to possibly early Late Cretaceous (Turonian).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near Karnezeika a roughly 140 m thick Upper Cretaceous section consists of interbedded pelagic limestones, cherts and coarse polymict breccias including ophiolites and shallow water limestones. At the base, pink pelagic limestones rest on deeply altered and fractured Lower Jurassic Pantokrator Limestone. This first pelagic facies is dated as middle Turonian, based on planktonic Foraminifera. Over 100 m of coarse ophiolite-carbonate breccias, interpreted as a channel or canyon fill in a pelagic environment, document the erosion of the Late Jurassic nappe edifice along the Cretaceous Pelagonian margin. Above these breccias, we mesured 16 m of principally pink and red pelagic limestones and radiolarian cherts, in which we recovered well-preserved radiolarians discussed here. In this interval, the presence of planktonic Foraminfera allows to state a late Turonian to Coniacian age. More than 40 radiolarian species are described and figured in this work. The radiolarian chronostratigraphy established by 10 different authors in 11 publications was compared for this study and used to establish radiolarian ranges. This exercise shows major discrepancies between authors for the radiolarian ranges of the studied assemblage. Nevertheless, a Turonian age can be stated based on a synthesis of cited radiolarian ranges. This age is consistent with the age based on planktonic foraminifera. In combining the ages of both Radiolaria and planktonic Foraminifera, the studied samples can be restricted to the late Turonian. However, the discrepancies of published radiolarian ranges call for an urgent, major revision of the Late Cretaceous radiolarian biochronology. The integration of planktonic foraminifera with radiolarians may greatly enhance biochronologic resolution in sections where both groups occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les radiolaires sont des unicellulaires planctoniques qui peuplent nos océans depuis plus de 500 millions d'années. Ces microorganismes développent un squelette en silice ayant des géométries extrêmement diversifiées et sophistiqués qui varient rapidement à l'échelle géologique et permettent de construire des échelles biochronologiques basées sur les différents assemblages qui se succèdent dans le temps. On retrouve ces organismes à l'état fossile dans les roches ma¬rines siliceuse desquelles on peut les extraire avec de l'acide. Des échantillons provenant du sultanat d'Oman et de Sicile ont été étudiés afin de mieux com¬prendre les relations de parenté entre les groupes et de comparer les faunes avec celles du même âge venant de Colombie britannique, du Japon et de Turquie, qui sont représentatives de divers domaines océaniques de l'époque. Certains radiolaires possèdent un anneau autour de leur coque centrale sphérique et ont ainsi été baptisés Saturnalides. Il y a 215 millions d'années, au Norien moyen, ce groupe se diversifie soudainement et donne naissance à une multitude d'espèces qui évoluent rapidement ce qui a permis d'établir des subdivisions temporelles supplémentaires et d'affiner les zonations exis¬tantes. L'étude détaillée de formes intermédiaires entre les espèces a permis d'établir de nouveaux liens de parenté et de considérer le genre Praehexasaturnalis comme l'ancêtre probable de nom¬breuses formes dans le Norien moyen et supérieur. Grâce à l'étude comparative des espèces de Saturnalidae allant du Mésozoïque au Cénozoïque, un certain type d'asymétrie de l'anneau a pu être identifiée comme étant propre à cette famille et plus précisément liée à la disposition de la coque la plus interne (microsphère). Deux nouveaux genres, Blechschmidtia et Tjerkium, s'inscrivent dans une lignée parallèle au Saturnalidae. Cette lignée met en évidence la formation au cours du temps d'un anneau à partir de la fusion de deux épines opposées. -- Late Triassic marine deposits of the Tethyan realm have been investigated in the Sultanate of Oman and in Sicily in order to contribute to the knowledge of radiolarian taxonomy and bio- stratigraphy of this key period preceding the Triassic-Jurassic boundary. In the middle Norian, the saturnalid radiolarians display intense diversification. This blooming of fast evolving spe¬cies has been used to establish a new zonation based on evolutionary successions that refine the existing zonal schemes. One new genus and 16 new species are described. The chronologic distribution of 172 species belonging to 72 genera is established from five sections in the Umar and Al Aridh units of the Hawasina Basin. Many Late Triassic saturnalid species are interpreted to originate from the genus Praehexasaturnalis Kozur & Mostler, which shows strong morpho¬logical diversification patterns. Detailed comparative studies of different types of asymmetric ring morphologies of Mesozoic to Cainozoic saturnalid species permitted to relate the origin of the asymmetry to the disposition of the initial skeletal structure and to gain new insight on the internal and external geometrical transformations of this group trough time and how the emergence of new families is induced by environmental stress. RÉSUMÉ Les formations marines du Trias supérieur du domaine téthysien ont été étudiées dans le Sultanat d'Oman et en Sicile afin de contribuer à la connaissance et au développement de la taxonomie et de la biostratigraphie des radiolaires de cette période clé qui précède la crise de la limite Trias-Jurassique. Au Norien moyen, les radiolaires Saturnalides montrent une intense diversi¬fication. Ce véritable "bloom" d'espèces qui évoluent rapidement a été utilisé pour l'établisse¬ment d'une nouvelle zonation basée sur les successions évolutives de ce groupe qui permettent d'affiner les subdivisions biochronologiques existantes. Un nouveau genre et seize nouvelles espèces sont décrits. La distribution stratigraphique de 172 espèces appartenant à 72 genres est établie pour 5 sections dans les unités d'Umar et d'Al Aridh du bassin de Hawasina. Un essai d'établissement d'une phylogénèse des Saturnalidae du Trias supérieur mène à proposer que le genre Praehexasaturnalis Kozur & Mostler est l'ancêtre de beaucoup d'espèces de Saturnalidae du Trias supérieur. L'étude comparative détaillée des différents types d'asymétrie de l'anneau chez les Saturnali¬dae du Mésozoïque au Cénozoïque a permis de lier l'origine de ce phénomène à la disposition de la structure initiale de leur squelette et par ce fait d'avoir une meilleure compréhension des transformations géométriques internes et externes subies par ce groupe au cours du temps et de concevoir comment l'émergence de nouvelles familles est induite lors de périodes de stress environnemental.