999 resultados para réaffectation des canaux


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depuis quelques années, la recherche dans le domaine des réseaux maillés sans fil ("Wireless Mesh Network (WMN)" en anglais) suscite un grand intérêt auprès de la communauté des chercheurs en télécommunications. Ceci est dû aux nombreux avantages que la technologie WMN offre, telles que l'installation facile et peu coûteuse, la connectivité fiable et l'interopérabilité flexible avec d'autres réseaux existants (réseaux Wi-Fi, réseaux WiMax, réseaux cellulaires, réseaux de capteurs, etc.). Cependant, plusieurs problèmes restent encore à résoudre comme le passage à l'échelle, la sécurité, la qualité de service (QdS), la gestion des ressources, etc. Ces problèmes persistent pour les WMNs, d'autant plus que le nombre des utilisateurs va en se multipliant. Il faut donc penser à améliorer les protocoles existants ou à en concevoir de nouveaux. L'objectif de notre recherche est de résoudre certaines des limitations rencontrées à l'heure actuelle dans les WMNs et d'améliorer la QdS des applications multimédia temps-réel (par exemple, la voix). Le travail de recherche de cette thèse sera divisé essentiellement en trois principaux volets: le contrôle d‟admission du trafic, la différentiation du trafic et la réaffectation adaptative des canaux lors de la présence du trafic en relève ("handoff" en anglais). Dans le premier volet, nous proposons un mécanisme distribué de contrôle d'admission se basant sur le concept des cliques (une clique correspond à un sous-ensemble de liens logiques qui interfèrent les uns avec les autres) dans un réseau à multiples-sauts, multiples-radios et multiples-canaux, appelé RCAC. Nous proposons en particulier un modèle analytique qui calcule le ratio approprié d'admission du trafic et qui garantit une probabilité de perte de paquets dans le réseau n'excédant pas un seuil prédéfini. Le mécanisme RCAC permet d‟assurer la QdS requise pour les flux entrants, sans dégrader la QdS des flux existants. Il permet aussi d‟assurer la QdS en termes de longueur du délai de bout en bout pour les divers flux. Le deuxième volet traite de la différentiation de services dans le protocole IEEE 802.11s afin de permettre une meilleure QdS, notamment pour les applications avec des contraintes temporelles (par exemple, voix, visioconférence). À cet égard, nous proposons un mécanisme d'ajustement de tranches de temps ("time-slots"), selon la classe de service, ED-MDA (Enhanced Differentiated-Mesh Deterministic Access), combiné à un algorithme efficace de contrôle d'admission EAC (Efficient Admission Control), afin de permettre une utilisation élevée et efficace des ressources. Le mécanisme EAC prend en compte le trafic en relève et lui attribue une priorité supérieure par rapport au nouveau trafic pour minimiser les interruptions de communications en cours. Dans le troisième volet, nous nous intéressons à minimiser le surcoût et le délai de re-routage des utilisateurs mobiles et/ou des applications multimédia en réaffectant les canaux dans les WMNs à Multiples-Radios (MR-WMNs). En premier lieu, nous proposons un modèle d'optimisation qui maximise le débit, améliore l'équité entre utilisateurs et minimise le surcoût dû à la relève des appels. Ce modèle a été résolu par le logiciel CPLEX pour un nombre limité de noeuds. En second lieu, nous élaborons des heuristiques/méta-heuristiques centralisées pour permettre de résoudre ce modèle pour des réseaux de taille réelle. Finalement, nous proposons un algorithme pour réaffecter en temps-réel et de façon prudente les canaux aux interfaces. Cet algorithme a pour objectif de minimiser le surcoût et le délai du re-routage spécialement du trafic dynamique généré par les appels en relève. Ensuite, ce mécanisme est amélioré en prenant en compte l‟équilibrage de la charge entre cliques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUME Introduction : Dans le coeur adulte, l'ischémie et la reperfusion entraînent des perturbations électriques, mécaniques, biochimiques et structurales qui peuvent causer des dommages réversibles ou irréversibles selon la sévérité de l'ischémie. Malgré les récents progrès en cardiologie et en chirurgie foetales, la connaissance des mécanismes impliqués dans la réponse du myocarde embryonnaire à un stress hypoxique transitoire demeure lacunaire. Le but de ce travail a donc été de caractériser les effets chrono-, dromo- et inotropes de l'anoxie et de la réoxygénation sur un modèle de coeur embryonnaire isolé. D'autre part, les effets du monoxyde d'azote (NO) et de la modulation des canaux KATP mitochondriaux (mito KATP) sur la récupération fonctionnelle postanoxique ont été étudiés. La production myocardique de radicaux d'oxygène (ROS) et l'activité de MAP Kinases (ERK et JNK) impliquées dans la signalisation cellulaire ont également été déterminées. Méthodes : Des coeurs d'embryons de poulet âgés de 4 jours battant spontanément ont été placés dans une chambre de culture puis soumis à une anoxie de 30 min suivie d'une réoxygénation de 60 min. L'activité électrique (ECG), les contractions de l'oreillette, du ventricule et du conotroncus (détectées par photométrie), la production de ROS (mesure de la fluorescence du DCFH) et l'activité kinase de ERK et JNK dans le ventricule ont été déterminées au cours de l'anoxie et de la réoxygénation. Les coeurs ont été traités avec un bloqueur des NO synthases (L-NAME), un donneur de NO (DETA-NONOate), un activateur (diazoxide) ou un inhibiteur (5-HD) des canaux mitoKATP un inhibiteur non-spécifique des PKC (chélérythrine) ou un piégeur de ROS (MPG). Résultats : L'anoxie et la réoxygénation entraînaient des arythmies (essentiellement d'origine auriculaire) semblables à celles observées chez l'adulte, des troubles de la conduction (blocs auriculo-ventriculaires de 1er, 2ème et 3ème degré) et un ralentissement marqué du couplage excitation-contraction (E-C) ventriculaire. En plus de ces arythmies, la réoxygénation déclenchait le phénomène de Wenckelbach, de rares échappements ventriculaires et une sidération myocardique. Aucune fibrillation, conduction rétrograde ou activité ectopique n'ont été observées. Le NO exogène améliorait la récupération postanoxique du couplage E-C ventriculaire alors que L'inhibition des NOS la ralentissait. L'activation des canaux mito KATP augmentait la production mitochondriale de ROS à la réoxygénation et accélérait la récupération de la conduction (intervalle PR) et du couplage E-C ventriculaire. La protection de ce couplage était abolie par le MPG, la chélérythrine ou le L-NAME. Les fonctions électrique et contractile de tous les coeurs récupéraient après 30-40 min de réoxygénation. L'activité de ERK et de JNK n'était pas modifiée par L'anoxie, mais doublait et quadruplait, respectivement, après 30 min de réoxygénation. Seule l'activité de JNK était diminuée (-60%) par l'activation des canaux mitoKATP. Cet effet inhibiteur était partiellement abolit par le 5-HD. Conclusion: Dans le coeur immature, le couplage E-C ventriculaire semble être un paramètre particulièrement sensible aux conditions d'oxygénation. Sa récupération postanoxique est améliorée par l'ouverture des canaux mitoKATP via une signalisation impliquant les ROS Ies PKC et le NO. Une réduction de l'activité de JNK semble également participer à cette protection. Nos résultats suggèrent que les mitochondries jouent un rôle central dans la modulation des voies de signalisation cellulaire, en particulier lorsque les conditions métaboliques deviennent défavorables. Le coeur embryonnaire isolé représente donc un modèle expérimental utile pour mieux comprendre les mécanismes associés à une hypoxie in utero et pour améliorer les stratégies thérapeutiques en cardiologie et chirurgie foetales. ABSTRACT Physiopathology of the anoxic-reoxygenated embryonic heart: Protective role of NO and KATP channel Aim: In the adult heart, the electrical, mechanical, biochemical and structural disturbances induced by ischemia and reperfusion lead to reversible or irreversible damages depending on the severity and duration of ischemia. In spite of recent advances in fetal cardiology and surgery, little is known regarding the cellular mechanisms involved in hypoxia-induced dysfunction in the developing heart. The aim of this study was to precisely characterize the chrono-, dromo- and inotropic disturbances associated with anoxia-reoxygenation in an embryonic heart model. Furthermore, the roles that nitric oxide (NO), reactive oxygen species (ROS), mitochondrial KATP, (mito KATP) channel and MAP Kinases could play in the stressed developing heart have been investigated. Methods: Embryonic chick hearts (4-day-old) were isolated and submitted in vitro to 30 min anoxia followed by 60 min reoxygenation. Electrical (ECG) and contractile activities of atria, ventricle and conotruncus (photometric detection), ROS production (DCFH fluorescence) and ERK and JNK activity were determined in the ventricle throughout anoxia-reoxygenation. Hearts were treated with NO synthase inhibitor (L-NAME), NO donor (DETA-NONOate), mitoKATP channel opener (diazoxide) or blocket (5-HD), PKC inhibitor (chelerythrine) and ROS scavenger (MPG). Results: Anoxia and reoxygenation provoked arrhythxnias (mainly originating from atrial region), troubles of conduction (st, 2nd, and 3rd degree atrio-ventricular blocks) and disturbances of excitation-contraction (E-C) coupling. In addition to these types of arrhythmias, reoxygenation triggered Wenckebach phenomenon and rare ventricular escape beats. No fibrillations, no ventricular ectopic beats and no electromechanical dissociation were observed. Myocardial stunning was observed during the first 30 min of reoxygenation. All hearts fully recovered their electrical and mechanical functions after 30-40 min of reoxygenation. Exogenous NO improved while NOS inhibition delayed E-C coupling recovery. Mito KATP, channel opening increased reoxygenation-induced ROS production and improved E-C coupling and conduction (PR) recovery. MPG, chelerythrine or L-NAME reversed this effect. Reoxygenation increased ERK and JNK activities land 4-fold, respectively, while anoxia had no effect. MitoKATP channel opening abolished the reoxygenation-induced activation of JNK but had no effect on ERK activity. This inhibitory effect was partly reversed by mitoKATP channel blocker but not by MPG. Conclusion: In the developing heart, ventricular E-C coupling was found to be specially sensitive to hypoxia-reoxygenation and its postanoxic recovery was improved by mitoKATP channel activation via a ROS-, PKC- and NO-dependent pathway. JNK inhibition appears to be involved in this protection. Thus, mitochondria can play a pivotal role in the cellular signalling pathways, notably under critical metabolic conditions. The model of isolated embryonic heart appears to be useful to better understand the mechanisms underlying the myocardial dysfunction induced by an in utero hypoxia and to improve therapeutic strategies in fetal cardiology and surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUME :Introduction. Les maladies cardiovasculaires représentent la première cause de mortalité dans les pays développés et l'insuffisance cardiaque (IC) est la plus fréquente. Suite à un infarctus, le coeur des patients subit un remodelage ventriculaire pouvant évoluer vers un état d'IC. L'IC se définit comme un état dans lequel le coeur n'est plus capable d'approvisionner suffisamment les organes et cet état s'accompagne souvent de troubles du rythme cardiaque. Le remodelage ventriculaire touche de nombreux gènes codant à la fois pour les voies métaboliques et pour des canaux ioniques favorisant ainsi l'apparition des arythmies responsables de la mort subite des patients atteints d'IC. Comprendre ce passage entre remodelage et IC est crucial afin de pouvoir un jour prévenir l'IC et les complications médicales qui l'accompagnent. Nous nous sommes intéressés aux canaux potassiques dépendants de l'ATP (KATP) car ces canaux ont la capacité de coupler le métabolisme de la cellule à son activité électrique. En effet, les canaux KATP s'ouvrent quand la charge énergétique (rapport ATP/ ADP) de la cellule chute. Dans les cardiomyocytes, l'ouverture des KATP induit une hyperpolarisation de la membrane cellulaire ce qui diminue indirectement la surcharge calcique et de ce fait préserve la cellule. Les canaux KATp sont formés de 4 sous-unités Kir6.x (Kir6.1 ou Kir6.2) formant le pore du canal associées à 4 sous-unités régulatrices SUR. Les propriétés électrophysiologiques ainsi que la sensibilité pharmacologique des canaux KATP dépendent de leur composition et seuls les canaux KATP formés par la sous-unité Kirô.l sont activés par le diazoxyde.Méthodes et résultats. Nous avons d'abord montré dans un modèle in vivo d'IC chez le rat adulte que les sous-unités Kir6.1 et SUR sont surexprimées dans ces conditions pathologiques. Par ailleurs, les cardiomyocytes issus des coeurs infarcis deviennent sensibles au diazoxyde reflétant la surexpression de Kir6.1. Les potentiels d'action qui sont prolongés dans l'IC et qui sont à l'origine d'arythmies majeures sont normalisés par l'ouverture des canaux KATp induite par le diazoxyde. Ainsi, l'ouverture pharmacologique des canaux KATp contribuerait à la cardio-protection. Dans une seconde partie, nous avons déterminé quels étaient les facteurs de transcription responsables de ce changement d'expression des sous-unités formant les KATP. Dans notre modèle, nous avons pu montrer que la surexpression de Kirô.l est due aux facteurs de transcription Fox03 et FoxF2 qui est aussi responsable de la surexpression des sous-unités SUR. Dans la dernière partie de ce travail, nous avons mis au point un modèle d'IC in vitro en cultivant les cardiomyocytes de rats adultes en présence d'angiotensine II (Angll) ou de TNFa. Ce modèle expérimental nous a non seulement permis de mettre en relation l'importance de L'AnglI et du TNFa sur le remodelage des canaux KATP mais aussi de développer un modèle in vitro présentant les mêmes caractéristiques que le modèle in vivo concernant le remodelage des KATP lors de l'IC. Ce dernier modèle expérimental ouvre des perspectives afin de mieux caractériser les voies de signalisation impliquées dans le remodelage des canaux KATp lors de l'IC.Conclusion. Les canaux KATp subissent un remodelage lors de l'IC et les résultats obtenus montrent le potentiel cardio-protecteur de ces canaux.ABSTRACT :Background and aim. Cardiovascular disease is the leading cause of death in developed countries and heart failure (HF) is the most common. Following myocardial infarction, the heart of the patient undergoes ventricular remodeling which may evolve toward a state of HF. HF is defined as a state in which heart is unable to supply enough blood to organs and this state is often accompanied by cardiac arrhythmias. Ventricular remodeling involves many genes coding for both metabolic enzymes and ion channels. Changes in ion channel expression can promote arrhythmias responsible for sudden death in patients with HF. A better understanding of the transition between remodeling and HF is crucial in order to prevent the complications associated to HF We were interested in ATP-dependent potassium channels (KATp) because they couple cell metabolism to electrical activity of the cell. Indeed, KATP channels open when the energy charge (ratio of ATP / ADP) of the cell collapses. In cardiomyocytes, the opening of KATP channels induces hyper- polanzation of the cell membrane which reduces calcium overload and thereby protects the cell. KATp channels are composed by 4 Kir6.x subumts (Kir6.1 or Kir6.2) forming the pore channel associated with 4 regulatory subunits SUR. The electrophysiological properties as well as pharmacological sensitivity of KATp channels depend on their composition and only KATP channels formed by Kir6.1 subunit are activated by diazoxide.Methods and results. Firstly, using an in vivo model of HF in adult rats, we showed that Kir6.1 and SUR subunits are overexpressed in HF. In addition, cardiomyocytes from post-infarction hearts became sensitive to diazoxide reflecting the overexpression of the Kir6.1 subunit. The opening of KATP by diazoxide tended to reduce the action potential duration (APD) which is extended in HF. This increase in APD is known to be a major source of arrhythmias during HF. Therefore, the opening of KATP channels by diazoxide would be cardio-protective. Secondly, we wanted to determine which transcription factors were responsible for this KATP remodeling. In our model of HF, we showed that overexpression of Kir6.1 is due to the transcription factors Fox03 and FOXF2 which is also responsible for SUR subunits overexpression. Thirdly, we developed an in vitro model of HF by cultivation of adult rat cardiomyocytes in the presence of angiotensin II (Angll) or TNFa. This model is very interesting not only because it underlines the importance of Angll and TNFa in KATp remodeling but also because this in vitro model presents the same KATP remodeling as the in vivo model of HF. These findings show that our in vitro model of HF opens up many possibilities to investigate more precisely the signaling pathways involved in remodeling of the KATP channels in HF.Conclusion. KATP channels undergo remodeling during HF and our results show the cardio¬protective potential of KATP channels in this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUME: Etude de l'activation et de l'inactivation pH-dépendantes des canaux ASICs (Acid-Sensing Ion Channels) Benoîte BARGETON, Département de Pharmacologie et de Toxicologie, Université de Lausanne, rue du Bugnon 27, CH-1005 Lausanne, Suisse Les canaux sodiques ASICs (Acid-Sensing Ion Channels) participent à la signalisation neuronale dans les systèmes nerveux périphérique et central. Ces canaux non voltage dépendants sont impliqués dans l'apprentissage, l'expression de la peur, la neurodégénération consécutive à une attaque cérébrale et la douleur. Les bases moléculaires sous-tendant leur activité ne sont pas encore totalement comprises. Ces canaux sont activés par une acidification du milieu extracellulaire et régulés, entre autres, par des ions tels que le Ca2+, le Zn2+ et le CI". La cristallisation de ASIC inactivé a été publiée. Le canal est un trimére de sous-unités identiques ou homologues. Chaque sous-unité a été décrite en analogie à un avant bras, un poignet et une main constituée d'un pouce, d'un doigt, d'une articulation, une boule β et une paume. Nous avons appliqué une approche bioinformatique systématique pour identifier les pH senseurs putatifs de ASICIa. Le rôle des pH senseurs putatifs a été testé par mutagénèse dirigée et des modifications chimiques combinées à une analyse fonctionnelle afin de comprendre comment les variations de ρ H ouvrent ces canaux. Les pH senseurs sont des acides aspartiques et glutamiques éparpillés sur la boucle extracellulaire suggérant que les changements de pH contrôlent l'activation et l'inactivation de ASIC en (dé)protonant ces résidus en divers endroits de la protéine. Par exemple lors de l'activation, la protonation des résidus à l'interface entre le pouce, la boule β et le doigt d'une même sous-unité induit un mouvement du pouce vers la bouie β et le doigt. De même lors de l'inactivation du canal les paumes des trois sous-unités formant une cavité se rapprochent. D'après notre approche bioinformatique, aucune histidine n'est impliquée dans la détection des variations de pH extracellulaire c'est-à-dire qu'aucune histidine ne serait un pH-senseur. Deux histidines de ASIC2a lient le Zn2+ et modifient l'affinité apparente du canal pour les protons. Une seule des deux est conservée parmi tous les ASICs, hASICIa H163. Elle forme un réseau de liaison hydrogène avec ses voisins conservés. L'étude détaillée de ce domaine, Pinterzone, montre son importance dans l'expression fonctionnelle des canaux. La perturbation de ce réseau par l'introduction d'un résidu hydrophobe (cystéine) par mutagénèse dirigée diminue l'expression du canal à la membrane plasmique. La modification des cystéines introduites par des réactifs spécifiques aux groupements sulfhydryle inhibe les canaux mutés en diminuant leur probabilité d'ouverture. Ces travaux décrivent les effets de l'acidification du milieu extracellulaire sur les canaux ASICs. ABSTRACT: Study of pH-dependent activation and inactivation of ASIC channels Benoîte BARGETON, Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1G05 Lausanne, Switzerland The ASIC (Acid-Sensing Ion Channels) sodium channels are involved in neuronal signaling in the central and peripheral nervous system. These non-voltage-gated channels are involved in learning, the expression of fear, neurodegeneration after ischemia and pain sensation. The molecular bases underlying their activity are not yet fully understood. ASICs are activated by extracellular acidification and regulated, eg by ions such as Ca2+, the Zn2+ and CI". The crystallization of inactivated ASIC has been published. The channel is a trimer of identical or homologous subunits. Each subunit has been described in analogy to a forearm, wrist and hand consisting of a thumb, a finger, a knuckle, a β-ball and a palm. We applied a systematic computational approach to identify putative pH sensor(s) of ASICIa. The role of putative pH sensors has been tested by site-directed mutagenesis and chemical modification combined with functional analysis in order to understand how changes in pH open these channels. The pH sensors are aspartic and glutamic acids distributed throughout the extracellular loop, suggesting that changes in pH control activation and inactivation of ASIC by protonation / deprotonation of many residues in different parts of the protein. During activation the protonation of various residues at the interface between the finger, the thumb and the β-ball induces the movement of the thumb toward the finger and the β-ball. During inactivation of the channel the palms of the three subunits forming a cavity approach each other. No histidine has been shown to be involved in extracellular pH changes detection, i.e. no histidine is a pH- sensor. Two histidines of ASIC2 bind Zn2+ and alter the apparent affinity of channel for protons. Only one of the two His is conserved among all ASICs, hASICIa H163. This residue is part of a network of hydrogen bonding with its conserved neighbors. The detailed study of this area, the interzone, shows its importance in the functional expression of ASICs. Disturbance of this network by the introduction of hydrophobic residues decreases the cell surface channel expression. Chemical modification of the introduced cysteines by thiol reactive compounds inhibits the mutated channels by a reduction of their open probability. These studies describe the effects of extracellular acidification on ASICs. RESUME GRAND PUBLIC: Etude de l'activation et de l'inactivation pH-dépendantes des canaux ASICs (Acid-Sensing Ion Channels) Benoîte BARGETON, Département de Pharmacologie et de Toxicologie, Université de Lausanne, rue du Bugnon 27, CH-1005 Lausanne, Suisse La transmission synaptique est un processus chimique entre deux neurones impliquant des neurotransmetteurs et leurs récepteurs. Un dysfonctionnement de certains types de synapses est à l'origine de beaucoup de troubles nerveux, tels que certaine forme d'épilepsie et de l'attention. Les récepteurs des neurotransmetteurs sont de très bonnes cibles thérapeutiques dans de nombreuses neuropathologies. Les canaux ASICs sont impliqués dans la neurodégénération consécutive à une attaque cérébrale et les bloquer pourraient permettre aux patients d'avoir moins de séquelles. Les canaux ASICs sont des détecteurs de l'acidité qui apparaît lors de situations pathologiques comme l'ischémie et l'inflammation. Ces canaux sont également impliqués dans des douleurs. Cibler spécifiquement ces canaux permettrait d'avoir de nouveaux outils thérapeutiques car à l'heure actuelle l'inhibiteur de choix, l'amiloride, bloque beaucoup d'autres canaux empêchant son utilisation pour bloquer les ASICs. C'est pourquoi il faut connaître et comprendre les bases moléculaires du fonctionnement de ces récepteurs. Les ASICs formés de trois sous-unités détectent les variations de l'acidité puis s'ouvrent transitoirement pour laisser entrer des ions chargés positivement dans la cellule ce qui active la signalisation neuronale. Afin de comprendre les bases moléculaires de l'activité des ASICs nous avons déterminé les sites de liaison des protons (pH-senseurs), ligands naturels des ASICs et décrit une zone importante pour l'expression fonctionnelle de ces canaux. Grâce à une validation systématique de résultats obtenus en collaboration avec l'Institut Suisse de Bioinformatique, nous avons décrit les pH-senseurs de ASICIa. Ces résultats, combinés à ceux d'autres groupes de recherche, nous ont permis de mieux comprendre comment les ASICs sont ouverts par une acidification du milieu extracellulaire. Une seconde étude souligne le rôle structural crucial d'une région conservée parmi tous les canaux ASICs : y toucher c'est diminuer l'activité de la protéine. Ce domaine permet l'harmonisation des changements dus à l'acidification du milieu extracellulaire au sein d'une même sous-unité c'est-à-dire qu'elle participe à l'induction de l'inactivation due à l'activation du canal Cette étude décrit donc quelle région de la protéine atteindre pour la bloquer efficacement en faisant une cible thérapeutique de choix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La pathologie de la fibrose kystique (FK) est causée par des mutations du gène codant pour le canal Cl- CFTR. Au niveau respiratoire, cette dysfonction du transport transépithélial de Cl- occasionne une altération de la composition et du volume du liquide de surface des voies aériennes. Une accumulation de mucus déshydraté favorise alors la colonisation bactérienne et une réponse inflammatoire chronique, entraînant des lésions épithéliales sévères au niveau des voies aériennes et des alvéoles pouvant culminer en défaillance respiratoire. Le principal objectif de mon projet de maîtrise était d’étudier les processus de réparation de l’épithélium alvéolaire sain, l’épithélium bronchique sain et FK à l’aide d’un modèle in vitro de plaies mécaniques. Nos résultats démontrent la présence d’une boucle autocrine EGF/EGFR contrôlant les processus de migration cellulaire et de réparation des lésions mécaniques. D’autre part, nos expériences montrent que l’EGF stimule l’activité et l’expression des canaux K+ KATP, KvLQT1 et KCa3.1 des cellules épithéliales respiratoires. L’activation de ces canaux est cruciale pour les processus de réparation puisque la majeure partie de la réparation stimulée à l’EGF est abolie en présence d’inhibiteurs de ces canaux. Nous avons également observé que les cellules FK présentent un délai de réparation, probablement causé par un défaut de la réponse EGF/EGFR et une activité/expression réduite des canaux K+. Nos résultats permettent de mieux comprendre les mécanismes de régulation des processus de réparation de l’épithélium sain et FK. De plus, ils ouvrent de nouvelles options thérapeutiques visant à promouvoir, à l’aide d’activateurs de canaux K+ et de facteurs de croissance, la régénération de l’épithélium respiratoire chez les patients atteints de FK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux potassiques dépendants du voltage sont formés de quatre sous-unités, chacune possédant six segments transmembranaires (S1-S6) et une boucle (p-loop) qui se trouve entre le cinquième et le sixième segment au niveau du pore. Il est connu que le segment senseur du voltage (S1-S4) subit un mouvement lorsque le potentiel membranaire change. Pour ouvrir le canal, il est nécessaire de transférer l'énergie du senseur du voltage (généré par le mouvement des charges positives de S4) au pore. Le mécanisme exact de ce couplage électromécanique est encore sous étude. Un des points de liaison entre le senseur de voltage et le pore est le lien physique fait par le segment S4-S5 (S45L). Le but de cette étude est de déterminer l'influence de la flexibilité du segment S45L sur le processus de couplage. Dans le S45L, trois glycines sont distribuées dans des positions différentes. Elles sont responsables de la flexibilité des hélices-alpha. Ces glycines (mais pas leurs positions exactes) sont conservées pour tous les canaux potassiques dépendants de potentiel. En utilisant la technique de mutagènes dirigé, la glycine a été remplacée dans chacune de ces différentes positions par une alanine et dans une deuxième étape, par une proline (pour introduire un angle dans l'hélice). Pour étudier le comportement des canaux dans cette nouvelle conformation, on a appliqué la technique de « patch clamp » pour déterminer les effets lors de l'ouverture du pore (courant ionique). Avec le « cut-open oocyte voltage-clamp », nous avons étudié les effets sur le mouvement du senseur de voltage (courant “gating”) et la coordination temporelle avec l'ouverture du pore (courant ionique). Les données ont montré qu’en réduisant la flexibilité dans le S45L, il faut avoir plus d'énergie pour faire ouvrir le canal. Le changement pour une proline suggère que le mouvement du senseur est indépendant du pore pendant l'ouverture du canal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans mon projet de doctorat, j’ai étudié des fonctions primordiales de l’épithélium respiratoire telles que la régulation du transport ionique, la clairance liquidienne et la réparation épithéliale. J’ai particulièrement mis l’emphase sur le rôle des canaux potassiques qui interviennent dans ces trois fonctions de l’épithélium respiratoire. J’ai tout d’abord prouvé que la modulation des canaux potassiques régulait l’activité du promoteur de αENaC, en partie via la voie de signalisation ERK1/2, dans des cellules alvéolaires. Cette régulation entraîne une variation de l’expression génique et protéique du canal ENaC. Physiologiquement, il en résulte une augmentation du phénomène de clairance liquidienne suite à l’activation des canaux K+, tandis que l’inhibition de ces canaux la diminue sévèrement. J’ai aussi pu démontrer que l’absence de canal KvLQT1 entraînait une diminution du courant (ENaC) sensible à l’amiloride, dans les cellules de trachée en culture primaire, isolées de souris KO pour kcnq1. Dans la seconde partie de mon étude, j’ai évalué l’impact de l’hyperglycémie sur la capacité de transport ionique et de réparation de cellules épithéliales bronchiques saines ou Fibrose Kystique. Mes résultats montrent que l’hyperglycémie diminue le transport transépithélial de chlore et le transport basolatéral de potassium. Des études préalables du laboratoire ayant montré que les canaux K+ et Cl- contrôlent les processus de réparation, j’ai donc évalué si ceux-ci étaient modifiés par l’hyperglycémie. Et en effet, l’hyperglycémie ralentit la vitesse de réparation des cellules issues des voies aériennes (CFBE-wt et CFBE-ΔF508). J’ai donc démontré que le transport de potassium intervenait dans des fonctions clés de l’épithélium respiratoire, comme dans la régulation génique de canaux ioniques, le contrôle de la clairance liquidienne alvéolaire, et que l’hyperglycémie diminuait le transport ionique (K+ et Cl-) et la réparation épithéliale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les toxines Cry sont des protéines synthétisées sous forme de cristaux par la bactérie bacille de Thuringe pendant la sporulation. Elles sont largement utilisées comme agents de lutte biologique, car elles sont toxiques envers plusieurs espèces d’invertébrées, y compris les nématodes. Les toxines Cry5B sont actives contre certaines espèces de nématodes parasites, y compris Ankylostoma ceylanicum un parasite qui infeste le système gastro-intestinal des humains. Jusqu’au présent, le mode d’action des toxines Cry nématicides reste grandement inconnu, sauf que leurs récepteurs spécifiques sont des glycolipides et qu’elles causent des dommages importants aux cellules intestinales. Dans cette étude, on démontre pour la première fois que la toxine nématicide Cry5Ba, membre de la famille des toxines à trois domaines et produite par la bactérie bacille de Thuringe, forme des pores dans les bicouches lipidiques planes en absence de récepteurs. Les pores formés par cette toxine sont de sélectivité cationique, à pH acide ou alcalin. Les conductances des pores formés sous conditions symétriques de 150 mM de KCl varient entre 17 et 330 pS, à pH 6.0 et 9.0. Les niveaux des conductances les plus fréquemment observés diffèrent les uns des autres par environ 17 à 18 pS, ce qui est compatible avec l’existence d’arrangement d’un nombre différent de pores élémentaires similaires, activés de façon synchronisée, ou avec la présence d’oligomères de tailles variables et de différents diamètres de pores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux calciques de type L CaV1.2 sont principalement responsables de l’entrée des ions calcium pendant la phase plateau du potentiel d’action des cardiomyocytes ventriculaires. Cet influx calcique est requis pour initier la contraction du muscle cardiaque. Le canal CaV1.2 est un complexe oligomérique qui est composé de la sous-unité principale CaVα1 et des sous-unités auxiliaires CaVβ et CaVα2δ1. CaVβ joue un rôle déterminant dans l’adressage membranaire de la sous-unité CaVα1. CaVα2δ1 stabilise l’état ouvert du canal mais le mécanisme moléculaire responsable de cette modulation n’a pas été encore identifié. Nous avons récemment montré que cette modulation requiert une expression membranaire significative de CaVα2δ1 (Bourdin et al. 2015). CaVα2δ1 est une glycoprotéine qui possède 16 sites potentiels de glycosylation de type N. Nous avons donc évalué le rôle de la glycosylation de type-N dans l’adressage membranaire et la stabilité de CaVα2δ1. Nous avons d’abord confirmé que la protéine CaVα2δ1 recombinante, telle la protéine endogène, est significativement glycosylée puisque le traitement à la PNGase F se traduit par une diminution de 50 kDa de sa masse moléculaire, ce qui est compatible avec la présence de 16 sites Asn. Il s’est avéré par ailleurs que la mutation simultanée de 6/16 sites (6xNQ) est suffisante pour 1) réduire significativement la densité de surface de! CaVα2δ1 telle que mesurée par cytométrie en flux et par imagerie confocale 2) accélérer les cinétiques de dégradation telle qu’estimée après arrêt de la synthèse protéique et 3) diminuer la modulation fonctionnelle des courants générés par CaV1.2 telle qu’évaluée par la méthode du « patch-clamp ». Les effets les plus importants ont toutefois été obtenus avec les mutants N663Q, et les doubles mutants N348Q/N468Q, N348Q/N812Q, N468Q/N812Q. Ensemble, ces résultats montrent que Asn663 et à un moindre degré Asn348, Asn468 et Asn812 contribuent à la biogenèse et la stabilité de CaVα2δ1 et confirment que la glycosylation de type N de CaVα2δ1 est nécessaire à la fonction du canal calcique cardiaque de type L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les canaux calciques de type L CaV1.2 sont principalement responsables de l’entrée des ions calcium pendant la phase plateau du potentiel d’action des cardiomyocytes ventriculaires. Cet influx calcique est requis pour initier la contraction du muscle cardiaque. Le canal CaV1.2 est un complexe oligomérique qui est composé de la sous-unité principale CaVα1 et des sous-unités auxiliaires CaVβ et CaVα2δ1. CaVβ joue un rôle déterminant dans l’adressage membranaire de la sous-unité CaVα1. CaVα2δ1 stabilise l’état ouvert du canal mais le mécanisme moléculaire responsable de cette modulation n’a pas été encore identifié. Nous avons récemment montré que cette modulation requiert une expression membranaire significative de CaVα2δ1 (Bourdin et al. 2015). CaVα2δ1 est une glycoprotéine qui possède 16 sites potentiels de glycosylation de type N. Nous avons donc évalué le rôle de la glycosylation de type-N dans l’adressage membranaire et la stabilité de CaVα2δ1. Nous avons d’abord confirmé que la protéine CaVα2δ1 recombinante, telle la protéine endogène, est significativement glycosylée puisque le traitement à la PNGase F se traduit par une diminution de 50 kDa de sa masse moléculaire, ce qui est compatible avec la présence de 16 sites Asn. Il s’est avéré par ailleurs que la mutation simultanée de 6/16 sites (6xNQ) est suffisante pour 1) réduire significativement la densité de surface de! CaVα2δ1 telle que mesurée par cytométrie en flux et par imagerie confocale 2) accélérer les cinétiques de dégradation telle qu’estimée après arrêt de la synthèse protéique et 3) diminuer la modulation fonctionnelle des courants générés par CaV1.2 telle qu’évaluée par la méthode du « patch-clamp ». Les effets les plus importants ont toutefois été obtenus avec les mutants N663Q, et les doubles mutants N348Q/N468Q, N348Q/N812Q, N468Q/N812Q. Ensemble, ces résultats montrent que Asn663 et à un moindre degré Asn348, Asn468 et Asn812 contribuent à la biogenèse et la stabilité de CaVα2δ1 et confirment que la glycosylation de type N de CaVα2δ1 est nécessaire à la fonction du canal calcique cardiaque de type L.