910 resultados para quantification géométrique
Resumo:
On révise les prérequis de géométrie différentielle nécessaires à une première approche de la théorie de la quantification géométrique, c'est-à-dire des notions de base en géométrie symplectique, des notions de groupes et d'algèbres de Lie, d'action d'un groupe de Lie, de G-fibré principal, de connexion, de fibré associé et de structure presque-complexe. Ceci mène à une étude plus approfondie des fibrés en droites hermitiens, dont une condition d'existence de fibré préquantique sur une variété symplectique. Avec ces outils en main, nous commençons ensuite l'étude de la quantification géométrique, étape par étape. Nous introduisons la théorie de la préquantification, i.e. la construction des opérateurs associés à des observables classiques et la construction d'un espace de Hilbert. Des problèmes majeurs font surface lors de l'application concrète de la préquantification : les opérateurs ne sont pas ceux attendus par la première quantification et l'espace de Hilbert formé est trop gros. Une première correction, la polarisation, élimine quelques problèmes, mais limite grandement l'ensemble des observables classiques que l'on peut quantifier. Ce mémoire n'est pas un survol complet de la quantification géométrique, et cela n'est pas son but. Il ne couvre ni la correction métaplectique, ni le noyau BKS. Il est un à-côté de lecture pour ceux qui s'introduisent à la quantification géométrique. D'une part, il introduit des concepts de géométrie différentielle pris pour acquis dans (Woodhouse [21]) et (Sniatycki [18]), i.e. G-fibrés principaux et fibrés associés. Enfin, il rajoute des détails à quelques preuves rapides données dans ces deux dernières références.
Resumo:
Assessment and prediction of the impact of vehicular traffic emissions on air quality and exposure levels requires knowledge of vehicle emission factors. The aim of this study was quantification of emission factors from an on road, over twelve months measurement program conducted at two sites in Brisbane: 1) freeway type (free flowing traffic at about 100 km/h, fleet dominated by small passenger cars - Tora St); and 2) urban busy road with stop/start traffic mode, fleet comprising a significant fraction of heavy duty vehicles - Ipswich Rd. A physical model linking concentrations measured at the road for specific meteorological conditions with motor vehicle emission factors was applied for data analyses. The focus of the study was on submicrometer particles; however the measurements also included supermicrometer particles, PM2.5, carbon monoxide, sulfur dioxide, oxides of nitrogen. The results of the study are summarised in this paper. In particular, the emission factors for submicrometer particles were 6.08 x 1013 and 5.15 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd respectively and for supermicrometer particles for Tora St, 1.48 x 109 particles per vehicle-1 km-1. Emission factors of diesel vehicles at both sites were about an order of magnitude higher than emissions from gasoline powered vehicles. For submicrometer particles and gasoline vehicles the emission factors were 6.08 x 1013 and 4.34 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively, and for diesel vehicles were 5.35 x 1014 and 2.03 x 1014 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively. For supermicrometer particles at Tora St the emission factors were 2.59 x 109 and 1.53 x 1012 particles per vehicle-1 km-1, for gasoline and diesel vehicles, respectively.
Resumo:
Recently published studies not only demonstrated that laser printers are often significant sources of ultrafine particles, but they also shed light on particle formation mechanisms. While the role of fuser roller temperature as a factor affecting particle formation rate has been postulated, its impact has never been quantified. To address this gap in knowledge, this study measured emissions from 30 laser printers in chamber using a standardized printing sequence, as well as monitoring fuser roller temperature. Based on a simplified mass balance equation, the average emission rates of particle number, PM2.5 and O3 were calculated. The results showed that: almost all printers were found to be high particle number emitters (i.e. > 1.01×1010 particles/min); colour printing generated more PM2.5 than monochrome printing; and all printers generated significant amounts of O3. Particle number emissions varied significantly during printing and followed the cycle of fuser roller temperature variation, which points to temperature being the strongest factor controlling emissions. For two sub-groups of printers using the same technology (heating lamps), systematic positive correlations, in the form of a power law, were found between average particle number emission rate and average roller temperature. Other factors, such as fuser material and structure, are also thought to play a role, since no such correlation was found for the remaining two sub-groups of printers using heating lamps, or for the printers using heating strips. In addition, O3 and total PM2.5 were not found to be statistically correlated with fuser temperature.
Resumo:
Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15mm while the MRI-based models contained an average error of 0.23mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
Precise protein quantification is essential in clinical dietetics, particularly in the management of renal, burn and malnourished patients. The EP-10 was developed to expedite the estimation of dietary protein for nutritional assessment and recommendation. The main objective of this study was to compare the validity and efficacy of the EP-10 with the American Dietetic Association’s “Exchange List for Meal Planning” (ADA-7g) in quantifying dietary protein intake, against computerised nutrient analysis (CNA). Protein intake of 197 food records kept by healthy adult subjects in Singapore was determined thrice using three different methods – (1) EP-10, (2) ADA-7g and (3) CNA using SERVE program (Version 4.0). Assessments using the EP-10 and ADA-7g were performed by two assessors in a blind crossover manner while a third assessor performed the CNA. All assessors were blind to each other’s results. Time taken to assess a subsample (n=165) using the EP-10 and ADA-7g was also recorded. Mean difference in protein intake quantification when compared to the CNA was statistically non-significant for the EP-10 (1.4 ± 16.3 g, P = .239) and statistically significant for the ADA-7g (-2.2 ± 15.6 g, P = .046). Both the EP-10 and ADA-7g had clinically acceptable agreement with the CNA as determined via Bland-Altman plots, although it was found that EP-10 had a tendency to overestimate with protein intakes above 150 g. The EP-10 required significantly less time for protein intake quantification than the ADA-7g (mean time of 65 ± 36 seconds vs. 111 ± 40 seconds, P < .001). The EP-10 and ADA-7g are valid clinical tools for protein intake quantification in an Asian context, with EP-10 being more time efficient. However, a dietician’s discretion is needed when the EP-10 is used on protein intakes above 150g.
Resumo:
The relationship between weather and mortality has been observed for centuries. Recently, studies on temperature-related mortality have become a popular topic as climate change continues. Most of the previous studies found that exposure to hot or cold temperature affects mortality. This study aims to address three research questions: 1. What is the overall effect of daily mean temperature variation on the elderly mortality in the published literature using a meta-analysis approach? 2. Does the association between temperature and mortality differ with age, sex, or socio-economic status in Brisbane? 3. How is the magnitude of the lag effects of the daily mean temperature on mortality varied by age and cause-of-death groups in Brisbane? In the meta-analysis, there was a 1-2 % increase in all-cause mortality for a 1ºC decrease during cold temperature intervals and a 2-5% increase for a 1ºC increment during hot temperature intervals among the elderly. Lags of up to 9 days in exposure to cold temperature intervals were statistically significantly associated with all-cause mortality, but no significant lag effects were observed for hot temperature intervals. In Brisbane, the harmful effect of high temperature (over 24ºC) on mortality appeared to be greater among the elderly than other age groups. The effect estimate among women was greater than among men. However, No evidence was found that socio-economic status modified the temperature-mortality relationship. The results of this research also show longer lag effects in cold days and shorter lag effects in hot days. For 3-day hot effects associated with 1°C increase above the threshold, the highest percent increases in mortality occurred among people aged 85 years or over (5.4% (95% CI: 1.4%, 9.5%)) compared with all age group (3.2% (95% CI: 0.9%, 5.6%)). The effect estimate among cardiovascular deaths was slightly higher than those among all-cause mortality. For overall 21-day cold effects associated with a 1°C decrease below the threshold, the percent estimates in mortality for people aged 85 years or over, and from cardiovascular diseases were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%), respectively compared with all age group (2.0% (95% CI: 0.7%, 3.3%)). Little research of this kind has been conducted in the Southern Hemisphere. This PhD research may contribute to the quantitative assessment of the overall impact, effect modification and lag effects of temperature variation on mortality in Australia and The findings may provide useful information for the development and implementation of public health policies to reduce and prevent temperature-related health problems.
Resumo:
Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.