933 resultados para proximity query, collision test, distance test, data compression, triangle test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El WCTR es un congreso de reconocido prestigio internacional en el ámbito de la investigación del transporte y aunque las actas publicadas están en formato digital y sin ISSN ni ISBN, lo consideramos lo suficientemente importante como para que se considere en los indicadores. Policies trying to increase walking within urban mobility modal split usually highlight the importance of the functional patterns and the environmental quality of the urban space as major drivers of citizens modal choices. Functional characteristics would be mainly associated to an appropriate mix of land uses within neighbourhoods, whereas environmental quality would be associated to the characteristics of urban spaces. The purpose of this research is threefold: first, to identify relevant proxy indicators, which could characterize pedestrian-friendly land use mix and environmental quality. Second, to assess, for both traits, existing disparities among neighbourhoods in a major metropolitan area. And finally, to explore the association between both indicators and children mobility patterns: according to their built environment, which neighbourhoods have a greater proportion of children and, how is their mobility? Using data from the 2004 household mobility survey in the 128 neighbourhoods of the municipality of Madrid, this paper concludes that potentially favourable conditions at the neighbourhood level seem to have only a modest influence in,mobility patterns , in terms of both, selection of closer destinations and a higher share of walking within modal split. The citys policy choices, with intensive investment in road and public transport infrastructure may explain why short-distance mobility is not as important as it could have been expected in those neighbourhoods with more pedestrian-friendly conditions. The metropolitan transport system is providing mobility conditions, which make far-away destinations attractive to most citizens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Policies trying to increase walking within urban mobility modal split usually highlight the importance of the functional patterns and the environmental quality of the urban space as major drivers of citizens modal choices. Functional characteristics would be mainly associated to an appropriate mix of land uses within neighbourhoods, whereas environmental quality would be associated to the characteristics of urban spaces. The purpose of this research is threefold: first, to identify relevant proxy indicators, which could characterize pedestrian-friendly land use mix and environmental quality. Second, to assess, for both traits, existing disparities among neighbourhoods in a major metropolitan area. And finally, to explore the association between both indicators and children mobility patterns: according to their built environment, which neighbourhoods have a greater proportion of children and, how is their mobility? Using data from the 2004 household mobility survey in the 128 neighbourhoods of the municipality of Madrid, this paper concludes that potentially favourable conditions at the neighbourhood level seem to have only a modest influence in,mobility patterns , in terms of both, selection of closer destinations and a higher share of walking within modal split. The city s policy choices, with intensive investment in road and public transport infrastructure may explain why short-distance mobility is not as important as it could have been expected in those neighbourhoods with more pedestrian-friendly conditions. The metropolitan transport system is providing mobility conditions, which make far-away destinations attractive to most citizens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lossless compression algorithms of the Lempel-Ziv (LZ) family are widely used nowadays. Regarding time and memory requirements, LZ encoding is much more demanding than decoding. In order to speed up the encoding process, efficient data structures, like suffix trees, have been used. In this paper, we explore the use of suffix arrays to hold the dictionary of the LZ encoder, and propose an algorithm to search over it. We show that the resulting encoder attains roughly the same compression ratios as those based on suffix trees. However, the amount of memory required by the suffix array is fixed, and much lower than the variable amount of memory used by encoders based on suffix trees (which depends on the text to encode). We conclude that suffix arrays, when compared to suffix trees in terms of the trade-off among time, memory, and compression ratio, may be preferable in scenarios (e.g., embedded systems) where memory is at a premium and high speed is not critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents a yes-no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a standard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those objects that were recognised incorrectly by the yes-filter (that is, to recognise the false positives of the yes-filter). By querying the no-filter after an object has been recognised by the yes-filter, we get a chance of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom filter of the same total length. A further increase in accuracy is possible if one chooses objects to include in the no-filter so that the no-filter recognises as many as possible false positives but no true positives, thus producing the most accurate yes-no Bloom filter among all yes-no Bloom filters. This paper studies how optimization techniques can be used to maximize the number of false positives recognised by the no-filter, with the constraint being that it should recognise no true positives. To achieve this aim, an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the problem size is normally large leading to intractable optimal solution. Considering the similarity of the ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is developed making use of a reduced ILP for the value function approximation. Numerical results show the ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B), and this is what can be recommended for use in yes-no Bloom filters. In a wider context of the study of lossy compression algorithms, our researchis an example showing how the arsenal of optimization methods can be applied to improving the accuracy of compressed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike’s information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally presented as the author's thesis (M.S.), University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital image processing is exploited in many diverse applications but the size of digital images places excessive demands on current storage and transmission technology. Image data compression is required to permit further use of digital image processing. Conventional image compression techniques based on statistical analysis have reached a saturation level so it is necessary to explore more radical methods. This thesis is concerned with novel methods, based on the use of fractals, for achieving significant compression of image data within reasonable processing time without introducing excessive distortion. Images are modelled as fractal data and this model is exploited directly by compression schemes. The validity of this is demonstrated by showing that the fractal complexity measure of fractal dimension is an excellent predictor of image compressibility. A method of fractal waveform coding is developed which has low computational demands and performs better than conventional waveform coding methods such as PCM and DPCM. Fractal techniques based on the use of space-filling curves are developed as a mechanism for hierarchical application of conventional techniques. Two particular applications are highlighted: the re-ordering of data during image scanning and the mapping of multi-dimensional data to one dimension. It is shown that there are many possible space-filling curves which may be used to scan images and that selection of an optimum curve leads to significantly improved data compression. The multi-dimensional mapping property of space-filling curves is used to speed up substantially the lookup process in vector quantisation. Iterated function systems are compared with vector quantisers and the computational complexity or iterated function system encoding is also reduced by using the efficient matching algcnithms identified for vector quantisers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

questions of forming of learning sets for artificial neural networks in problems of lossless data compression are considered. Methods of construction and use of learning sets are studied. The way of forming of learning set during training an artificial neural network on the data stream is offered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment. However usually the huge amount of 3D information is difficult to manage due to the fact that the robot storage system and computing capabilities are insufficient. Therefore, a data compression method is necessary to store and process this information while preserving as much information as possible. A few methods have been proposed to compress 3D information. Nevertheless, there does not exist a consistent public benchmark for comparing the results (compression level, distance reconstructed error, etc.) obtained with different methods. In this paper, we propose a dataset composed of a set of 3D point clouds with different structure and texture variability to evaluate the results obtained from 3D data compression methods. We also provide useful tools for comparing compression methods, using as a baseline the results obtained by existing relevant compression methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work was to realize a high-speed digital data transfer system for RPC muon chambers in the CMS experiment on CERN’s new LHC accelerator. This large scale system took many years and many stages of prototyping to develop, and required the participation of tens of people. The system interfaces to Frontend Boards (FEB) at the 200,000-channel detector and to the trigger and readout electronics in the control room of the experiment. The distance between these two is about 80 metres and the speed required for the optic links was pushing the limits of available technology when the project was started. Here, as in many other aspects of the design, it was assumed that the features of readily available commercial components would develop in the course of the design work, just as they did. By choosing a high speed it was possible to multiplex the data from some the chambers into the same fibres to reduce the number of links needed. Further reduction was achieved by employing zero suppression and data compression, and a total of only 660 optical links were needed. Another requirement, which conflicted somewhat with choosing the components a late as possible was that the design needed to be radiation tolerant to an ionizing dose of 100 Gy and to a have a moderate tolerance to Single Event Effects (SEEs). This required some radiation test campaigns, and eventually led to ASICs being chosen for some of the critical parts. The system was made to be as reconfigurable as possible. The reconfiguration needs to be done from a distance as the electronics is not accessible except for some short and rare service breaks once the accelerator starts running. Therefore reconfigurable logic is extensively used, and the firmware development for the FPGAs constituted a sizable part of the work. Some special techniques needed to be used there too, to achieve the required radiation tolerance. The system has been demonstrated to work in several laboratory and beam tests, and now we are waiting to see it in action when the LHC will start running in the autumn 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand performance of evasive and interceptive actions it is important to know how people decide when to initiate a movement - initiating at the 'right' moment is often essential for successful performance. It has been proposed that initiation is triggered when a perceptually derived quantity reaches an invariant criterion value. Candidate quantities include time-to-collision (TTC), distance, and rate of image expansion ( ROE), all of which have received empirical support. We studied initiation of an evasive manoeuvre in a computer-simulated steering task in which the observer was required to steer through a stationary visual environment and avoid colliding with an obstacle in their path. The results could not be explained by hypotheses which propose that evasive manoeuvre initiation is based on a fixed criterion value of TTC or distance. The overall pattern was, however, consistent with the use of a criterion ROE value. This was further tested by analyses designed to directly evaluate whether the ROE value used to initiate the response was the same across experimental conditions. Only two of the six participants showed evidence for using the ROE strategy.