970 resultados para prostaglandin E receptor 2
Resumo:
Pseudomonas aeruginosa, a major lung pathogen in cystic fibrosis (CF) patients, secretes an elastolytic metalloproteinase (EPa) contributing to bacterial pathogenicity. Proteinase-activated receptor 2 (PAR2), implicated in the pulmonary innate defense, is activated by the cleavage of its extracellular N-terminal domain, unmasking a new N-terminal sequence starting with SLIGKV, which binds intramolecularly and activates PAR2. We show that EPa cleaves the N-terminal domain of PAR2 from the cell surface without triggering receptor endocytosis as trypsin does. As evaluated by measurements of cytosolic calcium as well as prostaglandin E(2) and interleukin-8 production, this cleavage does not activate PAR2, but rather disarms the receptor for subsequent activation by trypsin, but not by the synthetic receptor-activating peptide, SLIGKV-NH(2). Proteolysis by EPa of synthetic peptides representing the N-terminal cleavage/activation sequences of either human or rat PAR2 indicates that cleavages resulting from EPa activity would not produce receptor-activating tethered ligands, but would disarm PAR2 in regard to any further activating proteolysis by activating proteinases. Our data indicate that a pathogen-derived proteinase like EPa can potentially silence the function of PAR2 in the respiratory tract, thereby altering the host innate defense mechanisms and respiratory functions, and thus contributing to pathogenesis in the setting of a disease like CF.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.
Resumo:
Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1β. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases.
Resumo:
Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enterocytes by activating PAR-2. PAR-2 mRNA was highly expressed in the mucosa of the small intestine and in an enterocyte cell line. Immunoreactive PAR-2 was detected at the apical membrane of enterocytes, where it could be cleaved by luminal trypsin. Physiological concentrations of pancreatic trypsin and a peptide corresponding to the tethered ligand of PAR-2, which is exposed by trypsin cleavage, stimulated generation of inositol 1,4,5-trisphosphate, arachidonic acid release, and secretion of prostaglandin E2 and F1α from enterocytes and a transfected cell line. Application of trypsin to the apical membrane of enterocytes and to the mucosal surface of everted sacs of jejunum also stimulated prostaglandin E2 secretion. Thus, luminal trypsin activates PAR-2 at the apical membrane of enterocytes to stimulate secretion of eicosanoids, which regulate multiple cell types in a paracrine and autocrine manner. We conclude that trypsin is a signaling molecule that specifically regulates enterocytes by triggering PAR-2.
Resumo:
Mouse bone marrow-derived mast cells (BMMCs) developed with interleukin 3 (IL-3) can be stimulated by c-kit ligand (KL) and accessory cytokines over a period of hours for direct delayed prostaglandin (PG) generation or over a period of days to prime for augmented IgE-dependent PG and leukotriene (LT) production, as previously reported. We now report that IL-4 is counterregulatory for each of these distinct KL-dependent responses. BMMCs cultured for 4 days with KL + IL-3 or with KL + IL-10 produced 5- to 7-fold more PGD2 and approximately 2-fold more LTC4 in response to IgE-dependent activation than BMMCs maintained in IL-3 alone. IL-4 inhibited the priming for increased IgE-dependent PGD2 and LTC4 production to the level obtained by activation of BMMCs maintained in IL-3 alone with an IC50 of approximately 0.2 ng/ml. IL-4 inhibited the KL-induced increase in expression of cytosolic phospholipase A2 (cPLA2) but had no effect on the incremental expression of PG endoperoxide synthase 1 (PGHS-1) and hematopoietic PGD2 synthase or on the continued baseline expression of 5-lipoxygenase, 5-lipoxygenase activating protein, and LTC4 synthase. BMMCs stimulated by KL + IL-10 for 10 h exhibited a delayed phase of PGD2 generation, which was dependent on de novo induction of PGHS-2. IL-4 inhibited the induction of PGHS-2 expression and the accompanying cytokine-initiated delayed PGD2 generation with an IC50 of approximately 6 ng/ml. IL-4 had no effect on the expression of PGHS-2 and the production of PGD2 elicited by addition of IL-1 beta to the combination of KL + IL-10. IL-4 had no effect on the immediate phase of eicosanoid synthesis elicited by KL alone or by IgE and antigen in BMMCs maintained in IL-3. Thus, the counterregulatory action of IL-4 on eicosanoid generation is highly selective for the induced incremental expression of cPLA2 and the de novo expression of PGHS-2, thereby attenuating time-dependent cytokine-regulated responses to stimulation via Fc epsilon receptor I and stimulation via c-kit, respectively.
Protease-activated receptor-2 peptides activate neurokinin-1 receptors in the mouse isolated trachea
Resumo:
Protective roles for protease-activated receptor-2 (PAR2) in the airways including activation of epithelial chloride (Cl-) secretion are based on the use of presumably PAR(2)-selective peptide agonists. To determine whether PAR(2) peptide-activated Cl- secretion from mouse tracheal epithelium is dependent on PAR(2), changes in ion conductance across the epithelium [short-circuit current (I-SC)] to PAR(2) peptides were measured in Ussing chambers under voltage clamp. In addition, epithelium and endothelium-dependent relaxations to these peptides were measured in two established PAR(2) bioassays, isolated ring segments of mouse trachea and rat thoracic aorta, respectively. Apical application of the PAR(2) peptide SLIGRL caused increases in I-SC, which were inhibited by three structurally different neurokinin receptor-1 (NK1R) antagonists and inhibitors of Cl- channels but not by capsaicin, the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37), or the nonselective cyclooxygenase inhibitor indomethacin. Only high concentrations of trypsin caused an increase in I-SC but did not affect the responses to SLIGRL. Relaxations to SLIGRL in the trachea and aorta were unaffected by the NK1R antagonist nolpitantium (SR 140333) but were abolished by trypsin desensitization. The rank order of potency for a range of peptides in the trachea I-SC assay was 2-furoyl-LIGRL > SLCGRL > SLIGRL > SLIGRT > LSIGRL compared with 2-furoyl-LIGRL > SLIGRL > SLIGRT > SLCGRL (LSIGRL inactive) in the aorta relaxation assay. In the mouse trachea, PAR(2) peptides activate both epithelial NK1R coupled to Cl- secretion and PAR(2) coupled to prostaglandin E-2-mediated smooth muscle relaxation. Such a potential lack of specificity of these commonly used peptides needs to be considered when roles for PAR(2) in airway function in health and disease are determined.
Resumo:
Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.
Resumo:
The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.
Resumo:
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin`s surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.
Resumo:
KM+ is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper I immune response against Leishmania major infection. in this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM+ (jfKM(+)) and its recombinant counterpart (rKM(+)) in experimental paracoccidioidomycosis. To this end, jfKM(+) or rKM(+) was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM+-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM+-treated mice presented higher levels of nitric oxide, IL-12, interferon-gamma, and tumor necrosis factor-a, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM+ led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM+ on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule.
Resumo:
Increased pro-inflammatory state has been implicated in the pathophysiology of major depressive disorder. The aim of this study was to determine serum levels of INF-alpha and soluble TNF-alpha receptors 1 and 2 (sTNFR1 and sTNFR2) in anti-depressant free depressed elderly patients as compared to healthy controls. Sixty-seven older adults (28 with major depression and 39 controls) were enrolled to this study. Participants were assessed by the SCID and diagnosis of major depressive episode was made according to the DSM-IV criteria. Serum INF-alpha, 5TNFR1 and sTNFR2 were determined by ELISA. Anti-depressant free patients with late-life depression showed an increased level of the sTNFR2 as compared to controls (p = 0.03). No significant differences were found in serum INF-alpha and sTNFR1 levels (p = 0.1 and p = 0.4, respectively). There was no correlation between serum levels of these inflammatory markers and the severity of depression. Our findings provide additional evidence of the involvement of abnormal pro-inflammatory state in late-life depression. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Context: Physiological activation of the prokineticin pathway has a critical role in olfactory bulb morphogenesis and GnRH secretion in mice. Objective: To investigate PROK2 and PROKR2 mutations in patients with hypogonadotropic hypogonadism (HH) associated or not with olfactory abnormalities. Design: We studied 107 Brazilian patients with HH (63 with Kallmann syndrome and 44 with normosmic HH) and 100 control individuals. The coding regions of PROK2 and PROKR2 were amplified by PCR followed by direct automatic sequencing. Results: In PROK2, two known frameshift mutations were identified. Two brothers with Kallmann syndrome harbored the homozygous p. G100fsX121 mutation, whereas one male with normosmic HH harbored the heterozygous p. I55fsX56 mutation. In PROKR2, four distinct mutations (p. R80C, p. Y140X, p. L173R, and p. R268C) were identified in five patients with Kallmann syndrome and in one patient with normosmic HH. These mutations were not found in the control group. The p. R80C, p. L173R, and p. R268C missense mutations were identified in the heterozygous state in the HH patients and in their asymptomatic first-degree relatives. In addition, nomutations of FGFR1, KAL1, GnRHR, KiSS-1, or GPR54 were identified in these patients. Notably, the new nonsense mutation (p. Y140X) was identified in the homozygous state in an anosmic boy with micropenis, bilateral cryptorchidism, and high-arched palate. His asymptomatic parents were heterozygous for this severe defect. Conclusion: We expanded the repertoire of PROK2 and PROKR2 mutations in patients with HH. In addition, we show that PROKR2 haploinsufficiency is not sufficient to cause Kallmann syndrome or normosmic HH, whereas homozygous loss-of-function mutations either in PROKR2 or PROK2 are sufficient to cause disease phenotype, in accordance with the Prokr2 and Prok2 knockout mouse models.
Resumo:
Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2(-/-) mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naive WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein-coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2(-/-) mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis.
Resumo:
Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Toll-like receptors (TLRs) sense specific microbial products and direct downstream signaling pathways in immune cells, linking innate, and adaptive immunity. Here, we analyze the role of TLR2 on innate and adaptive immune responses during N. caninum infection. Inflammatory peritoneal macrophages and bone marrow-derived dendritic cells exposed to N. caninum-soluble antigens presented an upregulated expression of TLR2. Increased receptor expression was correlated to TLR2/MyD88-dependent antigen-presenting cell maturation and pro-inflammatory cytokine production after stimulation by antigens. Impaired innate responses observed after infection of mice genetically deficient for TLR2((-/-)) was followed by downregulation of adaptive T helper 1 (Th1) immunity, represented by diminished parasite-specific CD4(+) and CD8(+) T-cell proliferation, IFN-gamma:interleukin (IL)-10 ratio, and IgG subclass synthesis. In parallel, TLR2(-/-) mice presented higher parasite burden than wild-type (WT) mice at acute and chronic stages of infection. These results show that initial recognition of N. caninum by TLR2 participates in the generation of effector immune responses against N. caninum and imply that the receptor may be a target for future prophylactic strategies against neosporosis. Immunology and Cell Biology (2010) 88, 825-833; doi:10.1038/icb.2010.52; published online 20 April 2010