154 resultados para propanol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic dehydrogenation of 2-propanol over Cu-SiO2 catalyst was investigated. The undesired side reaction of dehydration can be controlled by a selective catalyst and choice of proper operating conditions. The kinetics of the heterogeneous catalytic reaction can be adequately expressed by a forward first-order and reverse second-order mechanism. The rate-controlling step with chemically pure 2-propanol is single-site surface reaction, while for the technical grade alcohol the adsorption of alcohol is rate-controlling. The static bed data are compared with the fluidized bed dat

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time-domain spectroscopy (THz-TDS) and NMR relaxation time analysis has been applied to investigate 2-propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at ∼90 mol% H2O. Furthermore, this is the same value at which well-established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz-TDS have been used to provide estimates of the size of the hydration shell around 2-propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2-propanol are found in the 2-propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2-propanol/water across the composition range is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of highly ordered mesoporous tungsteno-silicas in which a high percentage of tungsten is introduced into a silica framework is reported hereafter. Powder XRD and TEM have been used to characterize the materials synthesized at room temperature. The materials are shown to be homogeneous as there is no evidence for any crystalline species other than the silica framework. The pore diameter and the surface area of the materials, evaluated from the nitrogen adsorption isotherms and unit cell parameter indicate a pore diameter of about 2 nm and a surface area of 1400 m(2) g(-1) for a content of 10% tungsten. Catalyzed dehydration of 2-propanol has been investigated and the activity of the materials synthesized is significant, even for low tungsten content W-MCM-41 materials. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic oxidation of 1-propanol was investigated on platinum electrodes modified by submonolayers of Pb and Sn in acid media. An increase of oxidation rates observed for both Pb and Sn, and the influence of theta values was investigated. The values of the apparent activation energy evaluated from the Arrhenius plots concerning the electrochemical oxidation of 1-propanol on modified platinzed platinum electrodes, reveal a significant decrease in the presence of upd Sn and Ph adatoms. A decrease from 56 to 26 U mol(-1) in the presence of Sn. and from 78 to 25 U mol(-1) for Ph adatoms are some illustrative values which reflect the promoting effect of the upd adatoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

the adsorption kinetics of n-propanol on platinized platinum electrode in sulphuric acid solution is studied. Data on the influence of adsorption potential and of temperature are given. Values for the velocity constants and for activation energies are evaluated from the experimental data. © 1989.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.