931 resultados para probabilistic roadmap
Resumo:
Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.
Resumo:
Os sistemas autónomos trazem como mais valia aos cenários de busca e salvamento a possibilidade de minimizar a presença de Humanos em situações de perigo e a capacidade de aceder a locais de difícil acesso. Na dissertação propõe-se endereçar novos métodos para perceção e navegação de veículos aéreos não tripulados (UAV), tendo como foco principal o planeamento de trajetórias e deteção de obstáculos. No que respeita à perceção foi desenvolvido um método para gerar clusters tendo por base os voxels gerados pelo Octomap. Na área de navegação, foram desenvolvidos dois novos métodos de planeamento de trajetórias, GPRM (Grid Probabilistic Roadmap) e PPRM (Particle Probabilistic Roadmap), que tem como método base para o seu desenvolvimento o PRM. O primeiro método desenvolvido, GPRM, espalha as partículas numa grid pré-definida, construindo posteriormente o roadmap na área determinada pela grid e com isto estima o trajeto mais curto até ao ponto destino. O segundo método desenvolvido, PPRM, espalha as partículas pelo cenário de aplicação, gera o roadmap considerando o mapa total e atribui uma probabilidade que irá permitir definir a trajetória otimizada. Para analisar a performance de cada método em comparação com o PRM, efetua-se a sua avaliação em três cenários distintos com recurso ao simulador MORSE.
Resumo:
Background: The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis. Results: We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes. Conclusions: ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at http://gdm.fmrp.usp.br/probfast.
Resumo:
Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far.
Resumo:
Fatigue and crack propagation are phenomena affected by high uncertainties, where deterministic methods fail to predict accurately the structural life. The present work aims at coupling reliability analysis with boundary element method. The latter has been recognized as an accurate and efficient numerical technique to deal with mixed mode propagation, which is very interesting for reliability analysis. The coupled procedure allows us to consider uncertainties during the crack growth process. In addition, it computes the probability of fatigue failure for complex structural geometry and loading. Two coupling procedures are considered: direct coupling of reliability and mechanical solvers and indirect coupling by the response surface method. Numerical applications show the performance of the proposed models in lifetime assessment under uncertainties, where the direct method has shown faster convergence than response surface method. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates probabilistic logics endowed with independence relations. We review propositional probabilistic languages without and with independence. We then consider graph-theoretic representations for propositional probabilistic logic with independence; complexity is analyzed, algorithms are derived, and examples are discussed. Finally, we examine a restricted first-order probabilistic logic that generalizes relational Bayesian networks. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
Action systems are a construct for reasoning about concurrent, reactive systems, in which concurrent behaviour is described by interleaving atomic actions. Sere and Troubitsyna have proposed an extension to action systems in which actions may be expressed and composed using discrete probabilistic choice as well as demonic nondeterministic choice. In this paper we develop a trace-based semantics for probabilistic action systems. This semantics provides a simple theoretical base on which practical refinement rules for probabilistic action systems may be justified.
Resumo:
The present paper addresses two major concerns that were identified when developing neural network based prediction models and which can limit their wider applicability in the industry. The first problem is that it appears neural network models are not readily available to a corrosion engineer. Therefore the first part of this paper describes a neural network model of CO2 corrosion which was created using a standard commercial software package and simple modelling strategies. It was found that such a model was able to capture practically all of the trends noticed in the experimental data with acceptable accuracy. This exercise has proven that a corrosion engineer could readily develop a neural network model such as the one described below for any problem at hand, given that sufficient experimental data exist. This applies even in the cases when the understanding of the underlying processes is poor. The second problem arises from cases when all the required inputs for a model are not known or can be estimated with a limited degree of accuracy. It seems advantageous to have models that can take as input a range rather than a single value. One such model, based on the so-called Monte Carlo approach, is presented. A number of comparisons are shown which have illustrated how a corrosion engineer might use this approach to rapidly test the sensitivity of a model to the uncertainities associated with the input parameters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The purpose of this study was threefold: first, the study was designed to illustrate the use of data and information collected in food safety surveys in a quantitative risk assessment. In this case, the focus was on the food service industry; however, similar data from other parts of the food chain could be similarly incorporated. The second objective was to quantitatively describe and better understand the role that the food service industry plays in the safety of food. The third objective was to illustrate the additional decision-making information that is available when uncertainty and variability are incorporated into the modelling of systems. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Regional commodity forecasts are being used increasingly in agricultural industries to enhance their risk management and decision-making processes. These commodity forecasts are probabilistic in nature and are often integrated with a seasonal climate forecast system. The climate forecast system is based on a subset of analogue years drawn from the full climatological distribution. In this study we sought to measure forecast quality for such an integrated system. We investigated the quality of a commodity (i.e. wheat and sugar) forecast based on a subset of analogue years in relation to a standard reference forecast based on the full climatological set. We derived three key dimensions of forecast quality for such probabilistic forecasts: reliability, distribution shift, and change in dispersion. A measure of reliability was required to ensure no bias in the forecast distribution. This was assessed via the slope of the reliability plot, which was derived from examination of probability levels of forecasts and associated frequencies of realizations. The other two dimensions related to changes in features of the forecast distribution relative to the reference distribution. The relationship of 13 published accuracy/skill measures to these dimensions of forecast quality was assessed using principal component analysis in case studies of commodity forecasting using seasonal climate forecasting for the wheat and sugar industries in Australia. There were two orthogonal dimensions of forecast quality: one associated with distribution shift relative to the reference distribution and the other associated with relative distribution dispersion. Although the conventional quality measures aligned with these dimensions, none measured both adequately. We conclude that a multi-dimensional approach to assessment of forecast quality is required and that simple measures of reliability, distribution shift, and change in dispersion provide a means for such assessment. The analysis presented was also relevant to measuring quality of probabilistic seasonal climate forecasting systems. The importance of retaining a focus on the probabilistic nature of the forecast and avoiding simplifying, but erroneous, distortions was discussed in relation to applying this new forecast quality assessment paradigm to seasonal climate forecasts. Copyright (K) 2003 Royal Meteorological Society.
Resumo:
OBJECTIVE: To evaluate the potential advantages and limitations of the use of the Brazilian hospital admission authorization forms database and the probabilistic record linkage methodology for the validation of reported utilization of hospital care services in household surveys. METHODS: A total of 2,288 households interviews were conducted in the county of Duque de Caxias, Brazil. Information on the occurrence of at least one hospital admission in the year preceding the interview was obtained from a total of 10,733 household members. The 130 records of household members who reported at least one hospital admission in a public hospital were linked to a hospital database with 801,587 records, using an automatic probabilistic approach combined with an extensive clerical review. RESULTS: Seventy-four (57%) of the 130 household members were identified in the hospital database. Yet only 60 subjects (46%) showed a record of hospitalization in the hospital database in the study period. Hospital admissions due to a surgery procedure were significantly more likely to have been identified in the hospital database. The low level of concordance seen in the study can be explained by the following factors: errors in the linkage process; a telescoping effect; and an incomplete record in the hospital database. CONCLUSIONS: The use of hospital administrative databases and probabilistic linkage methodology may represent a methodological alternative for the validation of reported utilization of health care services, but some strategies should be employed in order to minimize the problems related to the use of this methodology in non-ideal conditions. Ideally, a single identifier, such as a personal health insurance number, and the universal coverage of the database would be desirable.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.