738 resultados para privacy attacks


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stream ciphers are encryption algorithms used for ensuring the privacy of digital telecommunications. They have been widely used for encrypting military communications, satellite communications, pay TV encryption and for voice encryption of both fixed lined and wireless networks. The current multi year European project eSTREAM, which aims to select stream ciphers suitable for widespread adoptation, reflects the importance of this area of research. Stream ciphers consist of a keystream generator and an output function. Keystream generators produce a sequence that appears to be random, which is combined with the plaintext message using the output function. Most commonly, the output function is binary addition modulo two. Cryptanalysis of these ciphers focuses largely on analysis of the keystream generators and of relationships between the generator and the keystream it produces. Linear feedback shift registers are widely used components in building keystream generators, as the sequences they produce are well understood. Many types of attack have been proposed for breaking various LFSR based stream ciphers. A recent attack type is known as an algebraic attack. Algebraic attacks transform the problem of recovering the key into a problem of solving multivariate system of equations, which eventually recover the internal state bits or the key bits. This type of attack has been shown to be effective on a number of regularly clocked LFSR based stream ciphers. In this thesis, algebraic attacks are extended to a number of well known stream ciphers where at least one LFSR in the system is irregularly clocked. Applying algebriac attacks to these ciphers has only been discussed previously in the open literature for LILI-128. In this thesis, algebraic attacks are first applied to keystream generators using stop-and go clocking. Four ciphers belonging to this group are investigated: the Beth-Piper stop-and-go generator, the alternating step generator, the Gollmann cascade generator and the eSTREAM candidate: the Pomaranch cipher. It is shown that algebraic attacks are very effective on the first three of these ciphers. Although no effective algebraic attack was found for Pomaranch, the algebraic analysis lead to some interesting findings including weaknesses that may be exploited in future attacks. Algebraic attacks are then applied to keystream generators using (p; q) clocking. Two well known examples of such ciphers, the step1/step2 generator and the self decimated generator are investigated. Algebraic attacks are shown to be very powerful attack in recovering the internal state of these generators. A more complex clocking mechanism than either stop-and-go or the (p; q) clocking keystream generators is known as mutual clock control. In mutual clock control generators, the LFSRs control the clocking of each other. Four well known stream ciphers belonging to this group are investigated with respect to algebraic attacks: the Bilateral-stop-and-go generator, A5/1 stream cipher, Alpha 1 stream cipher, and the more recent eSTREAM proposal, the MICKEY stream ciphers. Some theoretical results with regards to the complexity of algebraic attacks on these ciphers are presented. The algebraic analysis of these ciphers showed that generally, it is hard to generate the system of equations required for an algebraic attack on these ciphers. As the algebraic attack could not be applied directly on these ciphers, a different approach was used, namely guessing some bits of the internal state, in order to reduce the degree of the equations. Finally, an algebraic attack on Alpha 1 that requires only 128 bits of keystream to recover the 128 internal state bits is presented. An essential process associated with stream cipher proposals is key initialization. Many recently proposed stream ciphers use an algorithm to initialize the large internal state with a smaller key and possibly publicly known initialization vectors. The effect of key initialization on the performance of algebraic attacks is also investigated in this thesis. The relationships between the two have not been investigated before in the open literature. The investigation is conducted on Trivium and Grain-128, two eSTREAM ciphers. It is shown that the key initialization process has an effect on the success of algebraic attacks, unlike other conventional attacks. In particular, the key initialization process allows an attacker to firstly generate a small number of equations of low degree and then perform an algebraic attack using multiple keystreams. The effect of the number of iterations performed during key initialization is investigated. It is shown that both the number of iterations and the maximum number of initialization vectors to be used with one key should be carefully chosen. Some experimental results on Trivium and Grain-128 are then presented. Finally, the security with respect to algebraic attacks of the well known LILI family of stream ciphers, including the unbroken LILI-II, is investigated. These are irregularly clock- controlled nonlinear filtered generators. While the structure is defined for the LILI family, a particular paramater choice defines a specific instance. Two well known such instances are LILI-128 and LILI-II. The security of these and other instances is investigated to identify which instances are vulnerable to algebraic attacks. The feasibility of recovering the key bits using algebraic attacks is then investigated for both LILI- 128 and LILI-II. Algebraic attacks which recover the internal state with less effort than exhaustive key search are possible for LILI-128 but not for LILI-II. Given the internal state at some point in time, the feasibility of recovering the key bits is also investigated, showing that the parameters used in the key initialization process, if poorly chosen, can lead to a key recovery using algebraic attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex attack is a sequence of temporally and spatially separated legal and illegal actions each of which can be detected by various IDS but as a whole they constitute a powerful attack. IDS fall short of detecting and modeling complex attacks therefore new methods are required. This paper presents a formal methodology for modeling and detection of complex attacks in three phases: (1) we extend basic attack tree (AT) approach to capture temporal dependencies between components and expiration of an attack, (2) using enhanced AT we build a tree automaton which accepts a sequence of actions from input message streams from various sources if there is a traversal of an AT from leaves to root, and (3) we show how to construct an enhanced parallel automaton that has each tree automaton as a subroutine. We use simulation to test our methods, and provide a case study of representing attacks in WLANs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates and develops techniques for accurately detecting Internet-based Distributed Denial-of-Service (DDoS) Attacks where an adversary harnesses the power of thousands of compromised machines to disrupt the normal operations of a Web-service provider, resulting in significant down-time and financial losses. This thesis also develops methods to differentiate these attacks from similar-looking benign surges in web-traffic known as Flash Events (FEs). This thesis also addresses an intrinsic challenge in research associated with DDoS attacks, namely, the extreme scarcity of public domain datasets (due to legal and privacy issues) by developing techniques to realistically emulate DDoS attack and FE traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing growth in the use of Hardware Security Modules (HSMs) towards identification and authentication of a security endpoint have raised numerous privacy and security concerns. HSMs have the ability to tie a system or an object, along with its users to the physical world. However, this enables tracking of the user and/or an object associated with the HSM. Current systems do not adequately address the privacy needs and as such are susceptible to various attacks. In this work, we analyse various security and privacy concerns that arise when deploying such hardware security modules and propose a system that allow users to create pseudonyms from a trusted master public-secret key pair. The proposed system is based on the intractability of factoring and finding square roots of a quadratic residue modulo a composite number, where the composite number is a product of two large primes. Along with the standard notion of protecting privacy of an user, the proposed system offers colligation between seemingly independent pseudonyms. This new property when combined with HSMs that store the master secret key is extremely beneficial to a user, as it offers a convenient way to generate a large number of pseudonyms using relatively small storage requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the developing digital economy, the notion of traditional attack on enterprises of national significance or interest has transcended into different modes of electronic attack, surpassing accepted traditional forms of physical attack upon a target. The terrorist attacks that took place in the United States on September 11, 2001 demonstrated the physical devastation that could occur if any nation were the target of a large-scale terrorist attack. Therefore, there is a need to protect criticalnational infrastructure and critical information infrastructure. In particular,this protection is crucial for the proper functioning of a modern society and for a government to fulfill one of its most important prerogatives – namely, the protection of its people. Computer networks have many benefits that governments, corporations, and individuals alike take advantage of in order to promote and perform their duties and roles. Today, there is almost complete dependence on private sector telecommunication infrastructures and the associated computer hardware and software systems.1 These infrastructures and systems even support government and defense activity.2 This Article discusses possible attacks on critical information infrastructures and the government reactions to these attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicular Ad-hoc Networks (VANETs) can make roads safer, cleaner, and smarter. It can offer a wide range of services, which can be safety and non-safety related. Many safety-related VANETs applications are real-time and mission critical, which would require strict guarantee of security and reliability. Even non-safety related multimedia applications, which will play an important role in the future, will require security support. Lack of such security and privacy in VANETs is one of the key hindrances to the wide spread implementations of it. An insecure and unreliable VANET can be more dangerous than the system without VANET support. So it is essential to make sure that “life-critical safety” information is secure enough to rely on. Securing the VANETs along with appropriate protection of the privacy drivers or vehicle owners is a very challenging task. In this work we summarize the attacks, corresponding security requirements and challenges in VANETs. We also present the most popular generic security policies which are based on prevention as well detection methods. Many VANETs applications require system-wide security support rather than individual layer from the VANETs’ protocol stack. In this work we will review the existing works in the perspective of holistic approach of security. Finally, we will provide some possible future directions to achieve system-wide security as well as privacy-friendly security in VANETs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an educational resource that covers a number of realistic attacks on privacy from a technical perspective along with the legal issues you might face if you don't take adequate precautions with data. The format is engaging and entertaining, framing real-world issues in a familiar medium - namely that of a trailer for a blockbuster film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ever increasing popularity of apps stems from their ability to provide highly customized services to the user. The flip side is that in order to provide such services, apps need access to very sensitive private information about the user. This leads to malicious apps that collect personal user information in the background and exploit it in various ways. Studies have shown that current app vetting processes which are mainly restricted to install time verification mechanisms are incapable of detecting and preventing such attacks. We argue that the missing fundamental aspect here is a comprehensive and usable mobile privacy solution, one that not only protects the user's location information, but also other equally sensitive user data such as the user's contacts and documents. A solution that is usable by the average user who does not understand or care about the low level technical details. To bridge this gap, we propose privacy metrics that quantify low-level app accesses in terms of privacy impact and transforms them to high-level user understandable ratings. We also provide the design and architecture of our Privacy Panel app that represents the computed ratings in a graphical user-friendly format and allows the user to define policies based on them. Finally, experimental results are given to validate the scalability of the proposed solution.