78 resultados para prions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmissible spongiform encephalopathies (TSEs) are caused by infectious agents whose structures have not been fully characterized but include abnormal forms of the host protein PrP, designated PrPSc, which are deposited in infected tissues. The transmission routes of scrapie and chronic wasting disease (CWD) seem to include environmental spread in their epidemiology, yet the fate of TSE agents in the environment is poorly understood. There are concerns that, for example, buried carcasses may remain a potential reservoir of infectivity for many years. Experimental determination of the environmental fate requires methods for assessing binding/elution of TSE infectivity, or its surrogate marker PrPSc, to and from materials with which it might interact. We report a method using Sarkosyl for the extraction of murine PrPSc, and its application to soils containing recombinant ovine PrP (recPrP). Elution properties suggest that PrP binds strongly to one or more soil components. Elution from a clay soil also required proteinase K digestion, suggesting that in the clay soil binding occurs via the N-terminal of PrP to a component that is absent from the sandy soils tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research into transmissible spongiform encephalopathy (TSE) diseases has become a high priority worldwide in recent years yet remarkably little is known about the behaviour of TSE infectivity in the environment. The resilience and stability of prion proteins could lead to soils becoming a potential reservoir of TSE infectivity as a result of contamination from activities such as infected carcass burial or the dispersion of effluents from slaughter houses, or by contamination of pastures by infected animals, (e.g. scrapie in sheep). Knowledge of the fate of prion proteins in soils, and associated physico-chemical conditions which favour migration, can be used to help prevent re-infection of animals through grazing, to protect watercourses and develop good management practices. In two consecutive experiments of 9 and 6 months, the migration of recombinant ovine PrP (recPrP) in soil columns was followed under contrasting levels of microbial activity (normal versus reduced), under varying regimes of soil water content and redox potential, and in two different soil types (loamy sand and clay loam). At each analysis time (1, 3, 6 or 9 months), in both soil types, full-length recPrP was detected in the original contaminated layer, indicating the resilience and stability of recPrP under varied soil conditions, even in the presence of active soil microbial populations. Evidence of protein migration was found in every soil column at the earliest analysis time (1 or 3 months), but was restricted to a maximum distance of 1 cm, indicative of limited initial mobility in soils followed by strong adsorption over the following days to weeks. The survival of recPrP in the soil over a period of at least 9 months was demonstrated. In this study, recPrP was used as an indicator for potential TSE infectivity, although infectivity tests should be carried out before conclusions can be drawn regarding the infection risk posed by prions in soil. However, it has been demonstrated that soil is likely to act as a significant barrier to the dispersion of contaminated material at storage or burial sites. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that branched polyamines, including polyamidoamide dendimers, polypropyleneimine, and polyethyleneimine, are able to purge PrPSc, the protease-resistant isoform of the prion protein, from scrapie-infected neuroblastoma (ScN2a) cells in culture. The removal of PrPSc by these compounds depends on both the concentration of branched polymer and the duration of exposure. Chronic exposure of ScN2a cells to low noncytotoxic concentrations of branched polyamines for 1 wk reduced PrPSc to an undetectable level, a condition that persisted at least 3 wk after removal of the compound. Structure–activity analysis revealed that a high surface density of primary amino groups is required for polyamines to eliminate PrPSc effectively from cells. The removal of PrPSc by branched polyamines is attenuated by chloroquine in living cells, and exposure of scrapie-infected brain extracts with branched polyamines at acidic pH rendered the PrPSc susceptible to protease in vitro, suggesting that endosomes or lysozomes may be the site of action. Our studies suggest that branched polyamines might be useful therapeutic agents for treatment of prion diseases and perhaps a variety of other degenerative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing concern that bovine spongiform encephalopathy (BSE) may have passed from cattle to humans. We report here that transgenic (Tg) mice expressing bovine (Bo) prion protein (PrP) serially propagate BSE prions and that there is no species barrier for transmission from cattle to Tg(BoPrP) mice. These same mice were also highly susceptible to a new variant of Creutzfeldt–Jakob disease (nvCJD) and natural sheep scrapie. The incubation times (≈250 days), neuropathology, and disease-causing PrP isoforms in Tg(BoPrP)Prnp0/0 mice inoculated with nvCJD and BSE brain extracts were indistinguishable and differed dramatically from those seen in these mice injected with natural scrapie prions. Our findings provide the most compelling evidence to date that prions from cattle with BSE have infected humans and caused fatal neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable concern that bovine prions from cattle with bovine spongiform encephalopathy (BSE) may have been passed to humans (Hu), resulting in a new form of Creutzfeldt–Jakob disease (CJD). We report here the transmission of bovine (Bo) prions to transgenic (Tg) mice expressing BoPrP; one Tg line exhibited incubation times of ≈200 days. Like most cattle with BSE, vacuolation and astrocytic gliosis were confined in the brainstems of these Tg mice. Unexpectedly, mice expressing a chimeric Bo/Mo PrP transgene were resistant to BSE prions whereas mice expressing Hu or Hu/Mo PrP transgenes were susceptible to Hu prions. A comparison of differences in Mo, Bo, and Hu residues within the C terminus of PrP defines an epitope that modulates conversion of PrPC into PrPSc and, as such, controls prion transmission across species. Development of susceptible Tg(BoPrP) mice provides a means of measuring bovine prions that may prove critical in minimizing future human exposure.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). Bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt–Jakob disease (CJD) of humans are among the most notable prion diseases. Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high β-sheet content. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens carrying a nucleic acid genome, prions appear to encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein. Miniprions generated in transgenic mice expressing PrP, in which nearly half of the residues were deleted, exhibit unique biological properties and should facilitate structural studies of PrPSc. While knowledge about prions has profound implications for studies of the structural plasticity of proteins, investigations of prion diseases suggest that new strategies for the prevention and treatment of these disorders may also find application in the more common degenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, a number of diseases caused by proteinaceous agents caused prions have been described. This article describes the nature of prions, how prions may cause disease, and the symptoms and pathology associated with prion diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New-variant Creutzfeldt-Jakob disease and scrapie are typically initiated by extracerebral exposure to the causative agent, and exhibit early prion replication in lymphoid organs. In mouse scrapie, depletion of B-lymphocytes prevents neuropathogenesis after intraperitoneal inoculation, probably due to impaired lymphotoxin-dependent maturation of follicular dendritic cells (FDCs), which are a major extracerebral prion reservoir. FDCs trap immune complexes with Fc-gamma receptors and C3d/C4b-opsonized antigens with CD21/CD35 complement receptors. We examined whether these mechanisms participate in peripheral prion pathogenesis. Depletion of circulating immunoglobulins or of individual Fc-gamma receptors had no effect on scrapie pathogenesis if B-cell maturation was unaffected. However, mice deficient in C3, C1q, Bf/C2, combinations thereof or complement receptors were partially or fully protected against spongiform encephalopathy upon intraperitoneal exposure to limiting amounts of prions. Splenic accumulation of prion infectivity and PrPSc was delayed, indicating that activation of specific complement components is involved in the initial trapping of prions in lymphoreticular organs early after infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les proteïnes associades a la mielina (MAIS), Nogo-A, MAG i OMgp, són molècules que presenten una capacitat inhibitòria molt important per el recreixement axonal i la neuroreparació després de lesió. No obstant des de fa anys les seves funcions han estat ampliades i s’han involucrat en diferents processos degeneratius del sistema nerviós o en processos neuroinflamatoris del sistema nerviós central i el perifèric com ara l'Escleresi Múltiple (MS). La base neurobiològica d’indicadors moleculars que són responsables del dany axonal en MS segueixen sense estar plenament descrits. Recentment s’ha publicat que el mecanisme de senyalització Nogo-A pot regir els primers canvis de la desmielinització immunomediada del sistema nerviós central en el model animal de MS, l’encefalomielitis autoimmune experimental (EAE). De la mateixa forma la proteïna priònica cel•lular és una proteïna que s’ha associat majoritàriament a malalties espongiformes, però que recentment s’ha vinculat (no sense controvèrsia) amb la seva possible relació amb la Malaltia d'Alzheimer (AD), ja que seria capaç de reclutar els oligòmers d’Aβ (ADDLs), els quals correlacionen millor amb el grau de demència, i amb els que interacciona directament, actuant així com un possible mediador de la fosforilació de tau en la malaltia. No obstant, les funcions de les MAIS i de la PrPc en aquests models de la malaltia no estan clarament definits i, per altra banda, es desconeixen els mecanismes de senyalització implicats, no descartant de forma clara el component neural i l’immune.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer"s disease and prion pathologies (e.g., Creutzfeldt-Jakob disease) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. For APP processing, emerging data suggest that the adaptor protein Dab1 plays a relevant role in regulating its intracellular trafficking and secretase-mediated proteolysis. Although some data have been presented, a putative relationship between human prion diseases and Dab1/APP interactions is lacking. Therefore, we have studied the putative relation between Dab1, APP processing and Aβ deposition, targets in sCJD cases. Our biochemical results categorized two groups of sCJD cases, which also correlated with PrPsc types 1 and 2 respectively. One group, with PrPsc type 1 showed increased Dab1 phosphorylation, and lower βCTF production with an absence of Aβ deposition. The second sCJD group, which carried PrPsc type 2, showed lower levels of Dab1 phosphorylation and βCTF production, similar to control cases. Relevant Aβ deposition in the second sCJD group was measured. Thus, a direct correlation between Dab1 phosphorylation, Aβ deposition and PrPsc type in human sCJD is presented for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc)) of the natural cellular prion protein (PrP(c)) encoded by the Prnp gene. Although several roles have been attributed to PrP(c), its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c) studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Principal Findings: Here we explore the role of PrP(c) expression in neurotransmission and neural excitability using wild-type, Prnp -/- and PrP(c)-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp -/- mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp -/- and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABA(A) and AMPA-kainate receptors are co-regulated in both Prnp -/- and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrP(c) is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABA(A) and AMPA-Kainate neurotransmission. New PrP(c) functions have recently been described, which point to PrP(c) as a target for putative therapies in Alzheimer's disease. However, our results indicate that a "gain of function" strategy in Alzheimer's disease, or a "loss of function" in prionopathies, may impair PrP(c) function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.