942 resultados para printed antennas
Resumo:
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.
Resumo:
This work investigates low cost localization systems (LS) based on received signal strength (RSS) and integrated with different types of antennas with main emphasis on sectorial antennas. The last few years have witnessed an outstanding growth in wireless sensor networks (WSN). Among its various possible applications, the localization field became a major area of research. The localization techniques based on RSS are characterized by simplicity and low cost of integration. The integration of LS based on RSS and sectorial antennas (SA) was proven to provide an effective solution for reducing the number of required nodes of the networks and allows the combination of several techniques, such as RSS and angle of arrival (AoA). This PhD thesis focuses on studying techniques, antennas and protocols that best meet the needs of each LS with main focus on low cost systems based on RSS and AoA. Firstly there are studied localization techniques and system that best suit the requirements of the user and the antennas that are most appropriate according to the nature of the signal. In this step it is intended to provide a fundamental understanding of the undertaken work. Then the developed antennas are presented according to the following categories: sectorial and microstrip antennas. Two sectorial antennas are presented: a narrowband antenna operating at 2.4 to 2.5 GHz and a broadband antenna operating at 800MHz-2.4GHz. The low cost printed antennas were designed to operate at 5 GHz, which may be used for vehicular communication. After presenting the various antennas, several prototypes of indoor/outdoor LS are implemented and analyzed. Localization protocols are also proposed, one based on simplicity and low power, and the other on interoperability with different types of antennas and system requirements.
Resumo:
The thesis is the outcome of the theoretical and experimental investigations on mocrostrip-fed printed strip monopole antenna.Finite ground plane has been effectively utilized to excite a new resonance near the fundamental mode by introducing another extended strip from the ground plane,without affecting compactness.Further size reduction was achieved by carrying out folding analysis on dual strip antenna and a compact folded dual strip antenna has been designed.Design methodologies for both the compact dual band antennas are presented.The proposed antennas can be used for mobile and WLAN applications due to wide bandwidth,moderate gain and omnidirectional radiation coverage.
Resumo:
El objetivo principal de esta tesis es el desarrollo de herramientas numéricas basadas en técnicas de onda completa para el diseño asistido por ordenador (Computer-Aided Design,‘CAD’) de dispositivos de microondas. En este contexto, se desarrolla una herramienta numérica basada en el método de los elementos finitos para el diseño y análisis de antenas impresas mediante algoritmos de optimización. Esta técnica consiste en dividir el análisis de una antena en dos partes. Una parte de análisis 3D que se realiza sólo una vez en cada punto de frecuencia de la banda de funcionamiento donde se sustituye una superficie que contiene la metalización del parche por puertas artificiales. En una segunda parte se inserta entre las puertas artificiales en la estructura 3D la superficie soportando una metalización y se procede un análisis 2D para caracterizar el comportamiento de la antena. La técnica propuesta en esta tesis se puede implementar en un algoritmo de optimización para definir el perfil de la antena que permite conseguir los objetivos del diseño. Se valida experimentalmente dicha técnica empleándola en el diseño de antenas impresas de banda ancha para diferentes aplicaciones mediante la optimización del perfil de los parches. También, se desarrolla en esta tesis un procedimiento basado en el método de descomposición de dominio y el método de los elementos finitos para el diseño de dispositivos pasivos de microonda. Se utiliza este procedimiento en particular para el diseño y sintonía de filtros de microondas. En la primera etapa de su aplicación se divide la estructura que se quiere analizar en subdominios aplicando el método de descomposición de dominio, este proceso permite analizar cada segmento por separado utilizando el método de análisis adecuado dado que suele haber subdominios que se pueden analizar mediante métodos analíticos por lo que el tiempo de análisis es más reducido. Se utilizan métodos numéricos para analizar los subdominios que no se pueden analizar mediante métodos analíticos. En esta tesis, se utiliza el método de los elementos finitos para llevar a cabo el análisis. Además de la descomposición de dominio, se aplica un proceso de barrido en frecuencia para reducir los tiempos del análisis. Como método de orden reducido se utiliza la técnica de bases reducidas. Se ha utilizado este procedimiento para diseñar y sintonizar varios ejemplos de filtros con el fin de comprobar la validez de dicho procedimiento. Los resultados obtenidos demuestran la utilidad de este procedimiento y confirman su rigurosidad, precisión y eficiencia en el diseño de filtros de microondas. ABSTRACT The main objective of this thesis is the development of numerical tools based on full-wave techniques for computer-aided design ‘CAD’ of microwave devices. In this context, a numerical technique based on the finite element method ‘FEM’ for the design and analysis of printed antennas using optimization algorithms has been developed. The proposed technique consists in dividing the analysis of the antenna in two stages. In the first stage, the regions of the antenna which do not need to be modified during the CAD process are initially characterized only once from their corresponding matrix transfer function (Generalized Admittance matrix, ‘GAM’). The regions which will be modified are defined as artificial ports, precisely the regions which will contain the conducting surfaces of the printed antenna. In a second stage, the contour shape of the conducting surfaces of the printed antenna is iteratively modified in order to achieve a desired electromagnetic performance of the antenna. In this way, a new GAM of the radiating device which takes into account each printed antenna shape is computed after each iteration. The proposed technique can be implemented with a genetic algorithm to achieve the design objectives. This technique is validated experimentally and applied to the design of wideband printed antennas for different applications by optimizing the shape of the radiating device. In addition, a procedure based on the domain decomposition method and the finite element method has been developed for the design of microwave passive devices. In particular, this procedure can be applied to the design and tune of microwave filters. In the first stage of its implementation, the structure to be analyzed is divided into subdomains using the domain decomposition method; this process allows each subdomains can be analyzed separately using suitable analysis method, since there is usually subdomains that can be analyzed by analytical methods so that the time of analysis is reduced. For analyzing the subdomains that cannot be analyzed by analytical methods, we use the numerical methods. In this thesis, the FEM is used to carry out the analysis. Furthermore the decomposition of the domain, a frequency sweep process is applied to reduce analysis times. The reduced order model as the reduced basis technique is used in this procedure. This procedure is applied to the design and tune of several examples of microwave filters in order to check its validity. The obtained results allow concluding the usefulness of this procedure and confirming their thoroughness, accuracy and efficiency for the design of microwave filters.
Resumo:
Debido al gran auge en las comunicaciones móviles, los terminales cada vez son más finos a la par que más grandes, pues cada vez los usuarios quieren tener terminales delgados pero con pantallas mayores. Por ello, el objetivo principal del proyecto es aprender y analizar las antenas usadas en los teléfonos móviles, concretamente las antenas impresas. En los últimos años con el aumento de los servicios ofrecidos por los terminales móviles se han ido añadiendo distintas bandas de frecuencia en las que trabajan estos terminales. Por ello, ha sido necesario diseñar antenas que no funcionen únicamente en una banda de frecuencia, sino antenas multibanda, es decir, antenas capaces de funcionar en las distintas bandas de frecuencias. Para realizar las simulaciones y pruebas de este proyecto se utilizó el software FEKO, tanto el CAD FEKO como el POST FEKO. El CAD FEKO se empleó para el diseño de la antena, mientras que el POST FEKO sirvió para analizar las simulaciones. Por último, hay que añadir que FEKO aunque está basado en el Método de los Momentos (MoM) es una herramienta que puede utilizar varios métodos numéricos. Además del MoM puede utilizar otras técnicas (por separado o hibridizadas) como son el Métodos de Elementos Finitos (FEM), Óptica Física (PO), Lanzamiento de rayos con Óptica Geométrica (RL-GO), Teoría Uniforme de la Difracción (UTD), Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD), ... ABSTRACT. Because of the boom in mobile communications, terminals are thinner and so large, because users want to thin terminals but with large screens. Therefore, the main objective of the project is to learn and analyse the antennas used in mobile phones, specifically printed antennas. In recent years with the rise of the services offered by mobile terminals have been adding different frequency bands in which these terminals work. For that reason, it has been necessary to design antennas that not work only in a frequency band, but multiband antennas, i.e., antennas capable of operating in different frequency bands. For performing simulations and testing in this project will be used software FEKO, as the CAD FEKO and POST FEKO. The CAD FEKO is used for the design of the antenna, whereas the POST FEKO is used for simulation analysis. Finally, it has to add that FEKO is based on the Method of Moments (MoM) but also it can use several numerical methods. Besides the MoM, FEKO can use other techniques (separated or hybridized) such as the Finite Element Method (FEM), Physical Optics (PO), Ray-launching Geometrical Optics (RL-GO), Uniform Theory of Diffraction (UTD), Finite Difference Time Domain (FDTD) …
Resumo:
A major challenge in the transmission of narrow pulses is the radiation characteristics of the antenna. Designing the front ends for UWB systems pose challenges compared to their narrow and wide band counterparts because in addition to having electrically small size, high efficiency and band width, the antenna has to have excellent transient response. The present work deals with the design of four novel antenna designs- Square Monopole, Semi-Elliptic Slot, Step and Linear Tapered slot - and an assay on their suitability in UWB Systems. Multiple resonances in the geometry are matched to UWB by redesigning the ground-patch interfaces. Techniques to avoid narrow band interference is proposed in the antenna level and their effect on a nano second pulse have also been investigated. The thesis proposes design guidelines to design the antenna on laminates of any permittivity and the analyzes are complete with results in the frequency and time domains.
Resumo:
In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, three major types of ultra wide band planar antennas are investigated: Monopole and Slot. Three novel compact UWB antennas, suitable for poratble applications, are designed and characterized, namely 1) Ground modified monopole 2) Serrated monopole 3) Triangular slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and timedomain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated
Resumo:
Simple design formulas for designing ultra wideband (UWB) antennas in the form of complementary planar monopoles are described and their validity is tested using full electromagnetic wave simulations and measurements. Assuming dielectric substrate with relative permittivity of 10.2, the designed antennas feature a small size of 13 mmtimes26 mm. They exhibit a 10 dB return loss bandwidth from 3 to more than 15 GHz accompanied by near omnidirectional characteristics and good radiation efficiency throughout this band
Resumo:
Plane wave scattering from a flat surface consisting of two periodic arrays of ring elements printed on a grounded dielectric sheet is investigated. It is shown that the reflection phase variation as a function of ring diameter is controlled by the difference in the centre resonant frequency of the two arrays. Simulated and measured results at X-band demonstrate that this parameter can be used to reduce the gradient and improve the linearity of the reflection phase versus ring size slope. These are necessary conditions for the re-radiating elements to maximise the bandwidth of a microstrip reflectarray antenna. The scattering properties of a conventional dual resonant multilayer structure and an array of concentric rings printed on a metal backed dielectric substrate are compared and the trade-off in performance is discussed.
Resumo:
Experimental results are presented to show how a planar circuit, printed on a laterally shielded dielectric waveguide, can induce and control the radiation from a leaky-mode. By studying the leaky-mode complex propagation constant, a desired radiation pattern can be synthesized, controlling the main radiation characteristics (pointing direction, beamwidth, sidelobes level) for a given frequency, This technique leads to very flexible and original leaky-wave antenna designs. The experiments show to be in very good agreement with the leaky-mode theory.
Resumo:
The artificial magnetic conductor (AMC) and electromagnetic band gap (EBG) characteristics of planar periodic metallic arrays printed on grounded dielectric substrate are investigated. The currents induced on the arrays are presented for the first time and their study reveals two distinct resonance phenomena associated with these surfaces. A new technique is presented to tailor the spectral position of the AMC operation and the EBG. Square patch arrays with fixed element size and variable periodicities are employed as working examples to demonstrate the dependence of the spectral AMC and EBG characteristics on array parameters. It is revealed that as the array periodicity is increased, the AMC frequency is increased, while the EBG frequency is reduced. This is shown to occur due to the different nature of the resonance phenomena and the associated underlying physical mechanisms that produce the two effects. The effect of substrate thickness is also investigated. Full wave method of moments (MoM) has been employed for the derivation of the reflection characteristics, the currents and the dispersion relations. A uniplanar array with simultaneous AMC and EBG operation is demonstrated theoretically and experimentally.
Resumo:
A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.