948 resultados para prediction interval


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable approaches for predicting pollutant build-up are essential for accurate urban stormwater quality modelling. Based on the in-depth investigation of metal build-up on residential road surfaces, this paper presents empirical models for predicting metal loads on these surfaces. The study investigated metals commonly present in the urban environment. Analysis undertaken found that the build-up process for metals primarily originating from anthropogenic (copper and zinc) and geogenic (aluminium, calcium, iron and manganese) sources were different. Chromium and nickel were below detection limits. Lead was primarily associated with geogenic sources, but also exhibited a significant relationship with anthropogenic sources. The empirical prediction models developed were validated using an independent data set and found to have relative prediction errors of 12-50%, which is generally acceptable for complex systems such as urban road surfaces. Also, the predicted values were very close to the observed values and well within 95% prediction interval.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three species of filamentous fungi, Aspergillus niger, Penicillium fellutanum and Mucor hiemalis, were selected and cultivated in vinasse media with different addition of molasses, pasteurized to 85°C for 30 minutes and with pH = 5.0. The microorganisms, previously adapted to the respective medium for 48 hours, from a solution of 107 spores.ml-1, were cultivated in pure and mixed cultures in Erlenmeyer vessel of 500ml, to 30°C, with constant agitation of 170 rpm, for 24, 48 and 72 hours, with four repetition for each samples. The biomass was separated by vacuum filtration in filter Whatman #1 and dried in oven at 105°C until right weight, the obtained liquid was submited to COD analysis. The datas were statistically analysed using a response surface methodology, to improve the effect on the molasses proportion and culture time, in the biomass production by microorganism in research. According to the obtained results (5.02% of molasses, 55.59h, 70% of spores solution of A. niger and 30% of spores solution of P. fellutanum), cultivating was carried out in Microferm Fermentor New Brunswick for 48 hours at 300 rpm, aired at 1v/v/m, using 5 liters of medium added with 5.0% of molasses on the conditions above described. The average of the results obtained (6.81g.l-1) was higher than the confidence interval (5.937 ; 6.369) and was inside the prediction interval (4.471 ; 7.834) both of them significant at 95% by the statistical test employed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: Treatment as prevention depends on retaining HIV-infected patients in care. We investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into care. DESIGN: Mathematical model. METHODS: Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load (CVL; sum of individual mean viral loads each year) and used a mathematical relationship between viral load and transmission probability to estimate the number of new HIV infections. We simulated four scenarios: 'no LTFU' (all patients stay in care); 'no tracing' (patients LTFU are not traced); 'immediate tracing' (after missed clinic appointment); and, 'delayed tracing' (after six months). RESULTS: About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. CONCLUSION: Tracing of patients LTFU enhances the preventive effect of ART, but the number of transmissions prevented is small.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Combination antiretroviral therapy (ART) suppresses viral replication in HIV-infected children. The growth of virologically suppressed children on ART has not been well documented. We aimed to develop dynamic reference curves for weight-for-age z scores (WAZ) and height-for-age z scores (HAZ). RESULTS A total of 4,876 children were followed for 7,407 person-years. Analyses were stratified by baseline z-scores and age, which were the most important predictors of growth response. The youngest children showed the most pronounced increase in weight and height initially but catch-up growth stagnated after 1-2 years. Three years after starting ART, WAZ ranged from -2.2 (95% Prediction interval -5.6 to 0.8) in children with baseline age "5 years and z-score "-3 to 0.0 (-2.7 to 2.4) in children with baseline age "2 years and WAZ "-1. For HAZ the corresponding range was -2.3 (-4.9 to 0.3) in children with baseline age"5 years and z-score "-3 to 0.3 (-3.1 to 3.4) in children with baseline age 2-5 years and HAZ "-1. CONCLUSIONS We have developed an online tool to calculate reference trajectories in fully suppressed children. The web application could help to define 'optimal' growth response and identify children with treatment failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: To identify an appropriate dosage strategy for patients receiving enoxaparin by continuous intravenous infusion (CII). Methods: Monte Carlo simulations were performed in NONMEM, (200 replicates of 1000 patients) to predict steady state anti-Xa concentrations (Css) for patients receiving a CII of enoxaparin. The covariate distribution model was simulated based on covariate demographics in the CII study population. The impact of patient weight, renal function (creatinine clearance (CrCL)) and patient location (intensive care unit (ICU)) were evaluated. A population pharmacokinetic model was used as the input-output model (1-compartment first order output model with mixed residual error structure). Success of a dosing regimen was based on the percent of Css that is between the therapeutic range of 0.5 IU/ml to 1.2 IU/ml. Results: The best dose for patients in the ICU was 4.2IU/kg/h (success mean 64.8% and 90% prediction interval (PI): 60.1–69.8%) if CrCL60ml/min, the best dose was 8.3IU/kg/h (success mean 65.4%, 90% PI: 58.5–73.2%). Simulations suggest that there was a 50% improvement in the success of the CII if the dose rate for ICU patients with CrCL

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In voiced speech analysis epochal information is useful in accurate estimation of pitch periods and the frequency response of the vocal tract system. Ideally, linear prediction (LP) residual should give impulses at epochs. However, there are often ambiguities in the direct use of LP residual since samples of either polarity occur around epochs. Further, since the digital inverse filter does not compensate the phase response of the vocal tract system exactly, there is an uncertainty in the estimated epoch position. In this paper we present an interpretation of LP residual by considering the effect of the following factors: 1) the shape of glottal pulses, 2) inaccurate estimation of formants and bandwidths, 3) phase angles of formants at the instants of excitation, and 4) zeros in the vocal tract system. A method for the unambiguous identification of epochs from LP residual is then presented. The accuracy of the method is tested by comparing the results with the epochs obtained from the estimated glottal pulse shapes for several vowel segments. The method is used to identify the closed glottis interval for the estimation of the true frequency response of the vocal tract system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the work [1] we proposed an approach of forming a consensus of experts’ statements in pattern recognition. In this paper, we present a method of aggregating sets of individual statements into a collective one for the case of forecasting of quantitative variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Waist circumference has been identified as a valuable predictor of cardiovascular risk in children. The development of waist circumference percentiles and cut-offs for various ethnic groups are necessary because of differences in body composition. The purpose of this study was to develop waist circumference percentiles for Chinese children and to explore optimal waist circumference cut-off values for predicting cardiovascular risk factors clustering in this population.----- ----- Methods: Height, weight, and waist circumference were measured in 5529 children (2830 boys and 2699 girls) aged 6-12 years randomly selected from southern and northern China. Blood pressure, fasting triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and glucose were obtained in a subsample (n = 1845). Smoothed percentile curves were produced using the LMS method. Receiver-operating characteristic analysis was used to derive the optimal age- and gender-specific waist circumference thresholds for predicting the clustering of cardiovascular risk factors.----- ----- Results: Gender-specific waist circumference percentiles were constructed. The waist circumference thresholds were at the 90th and 84th percentiles for Chinese boys and girls respectively, with sensitivity and specificity ranging from 67% to 83%. The odds ratio of a clustering of cardiovascular risk factors among boys and girls with a higher value than cut-off points was 10.349 (95% confidence interval 4.466 to 23.979) and 8.084 (95% confidence interval 3.147 to 20.767) compared with their counterparts.----- ----- Conclusions: Percentile curves for waist circumference of Chinese children are provided. The cut-off point for waist circumference to predict cardiovascular risk factors clustering is at the 90th and 84th percentiles for Chinese boys and girls, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the biascorrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.