920 resultados para population-size dependent processes
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05
Resumo:
The chemical potential of adsorbed film inside cylindrical mesopores is dependent on the attractive interactions between the adsorbed molecules and adsorbent, the curvature of gas/adsorbed phase interface, and surface tension. A state equation of the adsorbed film is proposed to take into account the above factors. Nitrogen adsorption on model adsorbents, MCM-41, which exhibit uniform cylindrical channels, are used to verify the theoretical analysis. The proposed theory is capable of describing the important features of adsorption processes in cylindrical mesopores. According to this theory, at a given relative pressure, the smaller the pore radius is, the thicker the adsorbed film will be. The thickening of adsorbed films in the pores as the vapor pressure increases inevitably causes an increase in the interface curvature, which consequently leads to capillary condensation. Besides, this study confirmed that the interface tension depends substantially on the interface curvature in small mesopores. A quantitative relationship between the condensation pressure and the pore radius can be derived from the state equation and used to predict the pore radius from a condensation pressure, or vice versa.
Resumo:
The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes - a marker of the effective population size - in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.
Resumo:
Passerines are especially vulnerable to predation at the pre-independence stage. Although the role of nest success in British farmland passerine declines is contentious, improvement in nest success through sympathetic management could play a role in their reversal. Because habitat is known to interact with predation, management options for mitigation will need to consider effects of nest predation. We present results from an observational study of a population of Common Blackbird Turdus merula on a farm which has experienced a range of agri-environment and game-management options, including a period with nest predator control, as a case study to address some of these issues. We used an information theoretic model comparison procedure to look for evidence of interactions between habitat and nest predation, and then asked whether habitat management and nest predator abundances could explain population trends at the site through their effects on nest success. Interactions were detected between measures of predator abundance and habitat variables, and these varied with nest stage - habitat within the vicinity of the nest appeared to be important at the egg stage, and nest-placement characteristics were important at the nestling stage. Although predator control appeared to have a positive influence on Blackbird breeding population size, the non-experimental set-up meant we could not eliminate other potential explanations. Variation in breeding population size did not appear to be influenced by variation in nest success alone. Our study demonstrates that observational data can only go so far in detection of such effects, and we discuss how it might be taken further. Agri-environment and game-management techniques are likely to influence nest predation pressure on farmland passerines, but the patterns, mechanisms and importance to population processes remain not wholly understood.
Resumo:
Passerines are especially vulnerable to predation at the pre-independence stage. Although the role of nest success in British farmland passerine declines is contentious, improvement in nest success through sympathetic management could play a role in their reversal. Because habitat is known to interact with predation, management options for mitigation will need to consider effects of nest predation. We present results from an observational study of a population of Common Blackbird Turdus merula on a farm which has experienced a range of agri-environment and game-management options, including a period with nest predator control, as a case study to address some of these issues. We used an information theoretic model comparison procedure to look for evidence of interactions between habitat and nest predation, and then asked whether habitat management and nest predator abundances could explain population trends at the site through their effects on nest success. Interactions were detected between measures of predator abundance and habitat variables, and these varied with nest stage - habitat within the vicinity of the nest appeared to be important at the egg stage, and nest-placement characteristics were important at the nestling stage. Although predator control appeared to have a positive influence on Blackbird breeding population size, the non-experimental set-up meant we could not eliminate other potential explanations. Variation in breeding population size did not appear to be influenced by variation in nest success alone. Our study demonstrates that observational data can only go so far in detection of such effects, and we discuss how it might be taken further. Agri-environment and game-management techniques are likely to influence nest predation pressure on farmland passerines, but the patterns, mechanisms and importance to population processes remain not wholly understood.
Resumo:
The pressures for land use change have led to an increasing isolation of habitat remnants throughout the world. The goal of this study was to estimate the population size and density of some endemic and threatened species in a nature reserve in the Cerrado biome. One hundred and thirty four point transects were undertaken at the Estacao Ecologica de Itirapina (EEI), one of the last natural grassland savannah remnants in Sao Paulo state, in the south-east of Brazil between September and December 2006 and densities estimated for seven species (four endemic to the Cerrado, one near-endemic and two grassland specialists). Neither species reached the minimum viable population size of 500-5000 individuals. Four species, White-banded Tanager, White-rumped Tanager, Black-throated Saltator and Sharp-tailed Tyrant have populations ranging from 112 to 248 individuals, while the other species have a low population (< 60 individuals). The mean densities of Sharp-tailed Tyrant and Cock-tailed Tyrant in the EEI grassland showed similar values to those observed in larger areas of the Cerrado, which may indicate that the EEL grassland area is well conserved. In spite of the restricted size of the EEI, small areas can maintain some endemic and threatened bird populations, thus contributing to local biodiversity and the ecological processes in the region. The capacity of fragments of Cerrado (similar to 2,000 ha) to maintain populations of endemic and threatened bird species is unlikely to be effective in the long term.
Resumo:
Habitat loss and fragmentation have a prominent role in determining the size of plant populations, and can affect plant-pollinator interactions. It is hypothesized that in small plant populations the ability to set seeds can be reduced due to limited pollination services, since individuals in small populations can receive less quantity or quality of visits. In this study, I investigated the effect of population size on plant reproductive success and insect visitation in 8 populations of two common species in the island of Lesvos, Greece (Mediterranean Sea), Echium plantagineum and Ballota acetabulosa, and of a rare perennial shrub endemic to north-central Italy, Ononis masquillierii. All the three species depended on insect pollinators for sexual reproduction. For each species, pollen limitation was present in all or nearly all populations, but the relationship between pollen limitation and population size was only present in Ononis masquillierii. However, in Echium plantagineum, significant relationships between both open-pollinated and handcrossed-pollinated seed sets and population size were found, being small populations comparatively less productive than large ones. Additionally, for this species, livestock grazing intensity was greater for small populations and for sparse patches, and had a negative influence on productivity of the remnant plants. Both Echium plantagineum and Ballota acetabulosa attracted a great number of insects, representing a wide spectrum of pollinators, thereby can be considered as generalist species. For Ballota acetabulosa, the most important pollinators were megachilid female bees, and insect diversity didn’t decrease with decreasing plant population size. By contrast, Ononis masquillierii plants generally received few visits, with flowers specialized on small bees (Lasioglossum spp.), representing the most important insect guild. In Echium plantagineum and Ballota acetabulosa, plants in small and large populations received the same amount of visits per flower, and no differences in the number of intraplant visited flowers were detected. On the contrary, large Ononis populations supported higher amounts of pollinators than small ones. At patch level, high Echium flower density was associated with more and higher quality pollinators. My results indicate that small populations were not subject to reduced pollination services than large ones in Echium plantagineum and Ballota acetabulosa, and suggest that grazing and resource limitation could have a major impact on population fitness in Echium plantagineum. The absence of any size effects in these two species can be explained in the light of their high local abundance, wide habitat specificity, and ability to compete with other co-flowering species for pollinators. By contrast, size represents a key characteristic for both pollination and reproduction in Ononis masquillierii populations, as an increase in size could mitigate the negative effects coming from the disadvantageous reproductive traits of the species. Finally, the widespread occurrence of pollen limitation in the three species may be the result of 1) an ongoing weakening or disruption of plantpollinator interactions derived from ecological perturbations, 2) an adaptive equilibrium in response to stochastic processes, and 3) the presence of unfavourable reproductive traits (for Ononis masquillierii).
Resumo:
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.
Resumo:
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.
Resumo:
This paper is concerned with an analysis of the Becker-Döring equations which lie at the heart of a number of descriptions of non-equilibrium phase transitions and related complex dynamical processes. The Becker-Döring theory describes growth and fragmentation in terms of stepwise addition or removal of single particles to or from clusters of similar particles and has been applied to a wide range of problems of physicochemical and biological interest within recent years. Here we consider the case where the aggregation and fragmentation rates depend exponentially on cluster size. These choices of rate coefficients at least qualitatively correspond to physically realistic molecular clustering scenarios such as occur in, for example, simulations of simple fluids. New similarity solutions for the constant monomer Becker-Döring system are identified, and shown to be generic in the case of aggregation and fragmentation rates that depend exponentially on cluster size.
Resumo:
ZrO(2)-10, 12 and 14 mol% Sc(2)O(3) nanopowders were prepared by using a nitrate-lysine gel-combustion synthesis. These materials were studied by synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy after calcination at different temperatures from 650 to 1200 degrees C, which led to samples with different average crystallite sizes, up to about 100 nm. The results from SXPD and Raman analyses indicate that, depending on Sc(2)O(3) content, the metastable t ''-form of the tetragonal phase or the cubic phase are fully retained at room temperature in nanocrystalline powders, provided an average crystallite sizes lower than similar to 30 nm. By contrast, powders with larger average crystallite sizes exhibit the stable rhombohedral, beta and gamma, phases and do not retain or very partially retain the metastable t '' and cubic ones.
Resumo:
Deforestation in southeast Brazil has led to the extinction of Hymenaea courbaril var. stilbocarpa and ex situ conservation has been established. In this study, the levels of genetic diversity and the effective population size of H. courbaril in a germplasm bank were investigated using six nuclear microsatellite loci. A total of 79 and 91 alleles were found in 65 seed-trees and their 176 offspring, respectively. Offspring have a higher average number of alleles per locus (A = 15.2) than seed-trees (A = 13.2), but lower observed heterozygosity (offspring: H (o) = 0.566; seed-trees: H (o) = 0.607). The estimate of outcrossing rate shows that the study population is perfectly outcrossed (t (m) = 0.978, P > 0.05). Significant deviations from random mating were detected through mating among relatives and correlated matings. The average variance in effective population size for each family was 2.63, with a total effective population size retained in the bank of 170.1. These results confirm that the preserved population of H. courbaril retains substantial genetic variability.
Resumo:
27th Annual Conference of the European Cetacean Society. Setúbal, Portugal, 8-10 April 2013.
Resumo:
It is widely accepted that the rate of evolution (substitution rate) at neutral genes is unaffected by population size fluctuations. This result has implications for the analysis of genetic data in population genetics and phylogenetics, and provides, in particular, a justification for the concept of the molecular clock. Here, we show that the substitution rate at neutral genes does depend on population size fluctuations in the presence of overlapping generations. As both population size fluctuations and overlapping generations are expected to be the norm rather than the exception in natural populations, this observation may be relevant for understanding variation in substitution rates within and between lineages.
Resumo:
Technology (i.e. tools, methods of cultivation and domestication, systems of construction and appropriation, machines) has increased the vital rates of humans, and is one of the defining features of the transition from Malthusian ecological stagnation to a potentially perpetual rising population growth. Maladaptations, on the other hand, encompass behaviours, customs and practices that decrease the vital rates of individuals. Technology and maladaptations are part of the total stock of culture carried by the individuals in a population. Here, we develop a quantitative model for the coevolution of cumulative adaptive technology and maladaptive culture in a 'producer-scrounger' game, which can also usefully be interpreted as an 'individual-social' learner interaction. Producers (individual learners) are assumed to invent new adaptations and maladaptations by trial-and-error learning, insight or deduction, and they pay the cost of innovation. Scroungers (social learners) are assumed to copy or imitate (cultural transmission) both the adaptations and maladaptations generated by producers. We show that the coevolutionary dynamics of producers and scroungers in the presence of cultural transmission can have a variety of effects on population carrying capacity. From stable polymorphism, where scroungers bring an advantage to the population (increase in carrying capacity), to periodic cycling, where scroungers decrease carrying capacity, we find that selection-driven cultural innovation and transmission may send a population on the path of indefinite growth or to extinction.