846 resultados para poly(hydroxyether terephthalate ester)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aliphatic-aromatic copolyester of poly(ethylene terephthalate), PET, and poly(ethylene adipate), PEA, PET-co-PEA, was synthesized by the high temperature melt reaction of post-consumer PET and PEA. As observed by NMR spectroscopy, the reaction yielded random copolyesters in a few minutes through ester-interchange reactions, even without added catalyst. The copolyesters obtained in the presence of a catalyst presented higher intrinsic viscosity than that obtained without the addition of catalyst, due to simultaneous polycondensation and ester-interchange reactions. The structure of the aliphatic-aromatic copolyesters obtained in different PET/PEA ratio is random as observed by NMR analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of poly(butylene terephthalate) copolyesters containing 5-tert-butyl isophthalate units up to 50%-mole, as well as the homopolyester entirely made of these units, were prepared by polycondensation from the melt. The microstructure of the copolymers was determined by NMR to be at random for the whole range of compositions. The effect exerted by the 5-tert-butyl isophthalate units on thermal, tensile and gas transport properties was evaluated. Both Tm and crystallinity as well as the mechanical moduli were found to decrease steadily with copolymerization whereas Tg increased and the polyesters became more brittle. Permeability and solubility sligthly increased also with the content in substituted units whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5-tert-butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters suggesting that a different chain mode of packing in the amorphous phase is likely adopted in this case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the crystallization characteristics of melt compounded nanocomposites of poly(ethylene terephthalate) (PET) and single walled carbon nanotubes (SWNTs). Differential scanning calorimetry studies showed that SWNTs at weight fractions as low as 0.03 wt% enhance the rate of crystallization in PET, as the cooling nanocomposite melt crystallizes at a temperature 10 °C higher as compared to neat PET. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. WAXD showed oriented crystallization of PET induced by oriented SWNTs in a randomized PET melt, indicating the role of SWNTs as nucleating sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of hyperbranched macromolecular architectures (dendrimers) upon chirality has received significant attention in recent years in the light of the proposal of amplification of chirality. In particular, several studies have been carried out on the chiroptical properties of dendrimers that contain a chiral core and achiral branches in order to determine if the chirality of the central core can be transmitted to the distal. region of the macromolecule. In addition to interest of a pure academic nature, the presence of such chiral conformational order would be extremely useful in the development of asymmetric catalysts. In this paper, a novel class of chiral dendrimers is described - these perfect hyperbranched macromolecules have been prepared by a convergent route by the coupling of a chiral central core based upon tris(2-aminoethyl)amine and poly(aromatic amide ester) dendritic branches. The chiral properties of these dendrimers have been investigated by detailed optical rotation studies and circular dichroism analysis; the results of these studies are described herein. (C) Wiley-VCH Verlag GmbH Co.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recycling of soft drink bottles poly(ethylene terephthalate) (PET) has been used as an additive in varnish containing alkyd resin. The PET, called to recycled PET (PET-R), was added to the varnish in increasing amounts. Samples of varnish containing PET-R (VPET-R) were used as a film onto slides and its thermal properties were evaluated using thermogravimetry (TG). Throughout the visual analysis and thermal behavior of VPET-R it is possible to identify that the maximum amount of PET-R added to the varnish without changing in the film properties was 2%.The kinetic parameters, such as activation energy (E) and the pre-exponential factor (A) were calculated by the isoconversional Flynn-Wall-Ozawa method for the samples containing 0.5 to 2.0% PET-R. A decrease in the values of E was verified for lower amounts of PET-R for the thermal decomposition reaction. A kinetic compensation effect (KCE) represented by the lnA=-13.42+0.23E equation was observed for all samples. The most suitable kinetic model to describe this decomposition process is the autocatalytic Sestak-Berggren, being the model applied to heterogeneous systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric strength of films made from poly(ethylene terephthalate) (PET) coated with a thin layer of polyaniline (PANI) was studied. The PANI layer was deposited on the PET films by the 'in situ' chemical polymerization method. The PANI layer of the PANI/PET films was undoped in NH4OH 0.1 M solution and re-doped with aqueous HCl solution under different pH values varying from 1 to 10. Electric breakdown measurements were performed by applying a voltage ramp and the results showed a dependence of the dielectric strength on the pH of the doping solution due to the changes in the electrical conductivity of the PANI layer. The dielectric strength of PET/PANI films treated under higher pH conditions showed an electric strength about 30% larger than the PET films, since it leads to a non-conductive PANI layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80-203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=-2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems. © 2007 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene tereftalate) (PET) is a polymer highly susceptible to the hydrolytic reactions that occur during applications and mainly in thermomechanical processing. These reactions lead to the decrease of molecular weight of the polymer, limiting the recycling number of the material. The reactive extrusion of the PET in presence of chain extenders is an alternative to recover mechanical and rheological properties that were depreciated by the polymer degradation. In this study, PET wastes from nonwoven fabrics production were extruded in presence of the secondary stabilizer Irgafos 126 (IRG) on variable concentrations. The results showed that Irgafos 126 increased molecular weight, decreased crystallinity and changed processing behavior of the PET, similarly to the effects produced by the well-known chain extender pyromellitic dianhydride (PMDA), showing that the secondary stabilizer Irgafos 126 can also act as a chain extender for the PET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of crystalline lamellae in ultra-thin layers of poly(ethylene terephthalate) PET confined between polycarbonate (PC) layers in an alternating assembly is investigated as a function of layer thickness by means of X-ray diffraction methods. Isothermal crystallization from the glassy state is in-situ followed by means of small-angle X-ray diffraction. It is found that the reduced size of the PET layers influences the lamellar nanostructure and induces a preferential lamellar orientation. Two lamellar populations, flat-on and edge-on, are found to coexist in a wide range of crystallization temperatures (Tc = 117–150 °C) and within layer thicknesses down to 35 nm. Flat-on lamellae appear at a reduced crystallization rate with respect to bulk PET giving rise to crystals of similar dimensions separated by larger amorphous regions. In addition, a narrower distribution of lamellar orientations develops when the layer thickness is reduced or the crystallization temperature is raised. In case of edge-on lamellae, crystallization conditions also influence the development of lamellar orientation; however, the latter is little affected by the reduced size of the layers. Results suggest that flat-on lamellae arise as a consequence of spatial confinement and edge-on lamellae could be generated due to the interactions with the PC interface. En este trabajo se investiga mediante difracción de rayos X a ángulos bajos (SAXS) y a ángulos altos (WAXS), la cristalización de láminas delgadas de Polietilén tereftalato (PET) confinadas entre láminas de Policarbonato (PC), tomando como referencia PET sin confinar. El espesor de las capas de PET varía entre 35nm y 115 nm. Se realizaron medidas de difracción a tres temperaturas de cristalización (117ºC, 132ºC y 150ºC) encontrándose que el reducido espesor de las capas de PET influye en la estructura lamelar que se desarrolla, induciendo una orientación preferente de las láminas. Se integró la intensidad difractada alrededor del máximo en SAXS para obtener una representación de la intensidad en función del ángulo acimutal. Mediante análisis de mínimos cuadrados se separó la curva experimental obtenida en tres contribuciones diferentes: una función Gausiana que describe la distribución de las orientaciones de las lamelas, una función lorenziana asociada a los máximos meridionales (asociados a las interfases PET-PC) y un background constante. Por otra parte la cantidad de material cristalizado se estimó asumiendo que la intensidad del background en el barrido acimutal, una vez restado el background del primer difractograma (sin máximos en SAXS) se asocia con la contribución del material isotrópico que resta en la muestra cristalizada. Se observa la coexistencia de dos poblaciones de lamelas: flat-on y edge-on. A medida que el espesor de las láminas de PET disminuye la población de las lamelas flat-on experimenta los siguientes cambios: 1) la distribución de orientación se estrecha, 2) la fracción de material cristalizado orientado aumenta, 3) la cinética de cristalización se ralentiza y 4) el largo espaciado aumenta es decir las regiones amorfas entre lamelas aumentan su tamaño. Parece demostrarse que es en las primeras etapas del crecimiento lamelar cuando la restricción espacial fuerza a las lamelas a esta orientación tipo flat-on frente a la orientación edge-on.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(hydroxyether of phenolphthalein) (PPH) was synthesized through the polycondensation of phenolphthalein with epichlorohydrin. It was characterized by Fourier transform infrared (FTIR) spectroscopy, NMR spectroscopy, and differential scanning calorimetry (DSC). The miscibility of the blends of PPH with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PPH/PEO blends prepared via casting from N,N-dimethylformamide possessed single, composition-dependent glass-transition temperatures. Therefore, the blends were miscible in the amorphous state for all compositions. FTIR studies indicated that there were competitive hydrogen-bonding interactions with the addition of PEO to the system, which were involved with (OHO)-O-. . .=C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights for the first time a full comprehension of the deformation procedure during the injection stretch blow moulding (ISBM) process of poly(ethylene terephthalate) (PET) containers, namely thin-walled rigid bottles. The processes required to form PET bottles are complicated and extensive; any development in understanding the nature of material deformation can potentially improve the bottle optimisation process. Removing the bottle mould and performing free-stretch-blow (FSB) experiments revealed insight into the bottle forming characteristics at various preform temperatures and blowing rates. Process outputs cavity pressure and stretch-rod force were recorded using at instrumented stretch-rod and preform surface strain mapping was determined using a combination of a unique patterning procedure and high speed stereoscopic digital image correlation. The unprecedented experimental analysis reveals that the deformation behaviour varies considerably with contrasting process input parameters. Investigation into the effect on deformation mode, strain rate and final bottle shape provide a basis for full understanding of the process optimisation and therefore how the process inputs may aid development of the preferred optimised container.