990 resultados para pillared layered materials
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction in layered materials, where the thermal diffusivity is piecewise constant. Recently, in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction. Eng Anal Boundary Elem 2008;32:697–703], a MFS was proposed with the sources placed outside the space domain of interest, and we extend that technique to numerically approximate the heat flow in layered materials. Theoretical properties of the method, as well as numerical investigations are included.
Resumo:
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Resumo:
Acknowledgments The financial support of the part of this research by The Royal Society, The Royal Academy of Engineering and The Carnegie Trust for the Universities of Scotland is gratefully acknowledged.
Resumo:
Acknowledgments The financial support of the part of this research by The Royal Society, The Royal Academy of Engineering and The Carnegie Trust for the Universities of Scotland is gratefully acknowledged.
Resumo:
180 p.
Resumo:
The structure of several types of layered materials will be described. These include clays, layered double hydroxides, group IV metal phosphates and other layered materials. The preparation of the pillared materials and pillaring agents will be presented along with a description of the properties and applications of the products.
Resumo:
Techniques and mechanism of doping controlled amounts of various cations into pillared clays without causing precipitation or damages to the pillared layered structures are reviewed and discussed. Transition metals of great interest in catalysis can be doped in the micropores of pillared clay in ionic forms by a two-step process. The micropore structures and surface nature of pillared clays are altered by the introduced cations, and this results in a significant improvement in adsorption properties of the clays. Adsorption of water, air components and organic vapors on cation-doped pillared clays were studied. The effects of the amount and species of cations on the pore structure and adsorption behavior are discussed. It is demonstrated that the presence of doped Ca2+ ions can effectively aides the control of modification of the pillared clays of large pore openings. Controlled cation doping is a simple and powerful tool for improving the adsorption properties of pillared clay.
Resumo:
A two-step method of loading controlled amounts of transition metal cations into alumina pillared clays (Al-PILCs) is proposed. First, calcined Al-PILC was dispersed into an aqueous solution of sodium or ammonium ions. Increasing the pH of the dispersion resulted in an increase in the amount of cations loaded into the clay. The ion-doped Al-PILC was then exchanged with an aqueous solution of transition metal salt at a pH of similar to 4.5 to replace Na+ or NH4+ ions by transition metal cations. Analytical techniques such as atomic absorption spectroscopy, X-ray diffraction, diffuse reflectance-ultraviolet-visible spectroscopy, as well as N-2 adsorption were used to characterize the PILC products with and without the loading of metal ions. The introduced transition metal species exist in the forms of hydrated ions in the PILC hosts. The content of transition metal ions in the final product increased with the amount of Na+ or NH4+ loaded in the first step so that by controlling the pH of the dispersion in the first step, one can control the doping amounts of transition metal cations into Al-PILCs. A sample containing 0.125 mmol/g of nickel was thus obtained, which is similar to 3 times of that obtained by directly exchanging Al-PILC with Ni(NO3)(2) solution, while the pillared layered structures of the Al-PILC remained. The porosity analysis using N-2 adsorption data indicated that most of the doped transition metal ions dispersed homogeneously in the micropores of the Al-PILC, significantly affecting the micropore structure.
Resumo:
CNPq
Resumo:
A range of chromia pillared montmorillonite and tin oxide pillared laponite clay catalysts, as well as new pillared clay materials such as cerium and europium oxide pillared montmorillonites were synthesised. Methods included both conventional ion exchange techniques and microwave enhanced methods to improve performance and/or reduce preparation time. These catalytic materials were characterised in detail both before and after use in order to study the effect of the preparation parameters (starting material, preparation method, pillaring species, hydroxyl to metal ratio etc.) and the hydro cracking procedure on their properties. This led to a better understanding of the nature of their structure and catalytic operation. These catalysts were evaluated with regards to their performance in hydrocracking coal derived liquids in a conventional microbomb reactor (carried out at Imperial College). Nearly all catalysts displayed better conversions when reused. The chromia pillared montmorillonite CM3 and the tin oxide pillared laponite SL2a showed the best "conversions". The intercalation of chromium in the form of chromia (Cr203) in the interlayer clearly increased conversion. This was attributed to the redox activity of the chromia pillar. However, this increase was not proportional to the increase in chromium content or basal spacing. In the case of tin oxide pillared laponite, the catalytic activity might have been a result of better access to the acid sites due to the delaminated nature of laponite, whose activity was promoted by the presence of tin oxide. The manipulation of the structural properties of the catalysts via pillaring did not seem to have any effect on the catalysts' activity. This was probably due to the collapse of the pillars under hydrocracking conditions as indicated by the similar basal spacing of the catalysts after use. However, the type of the pillaring species had a significant effect on conversion. Whereas pillaring with chromium and tin oxides increased the conversion exhibited by the parent clays, pillaring with cerium and europium oxides appeared to have a detrimental effect. The relatively good performance of the parent clays was attributed to their acid sites, coupled with their macropores which are able to accommodate the very high molecular mass of coal derived liquids. A microwave reactor operating at moderate conditions was modified for hydro cracking coal derived liquids and tested with the conventional catalyst NiMo on alumina. It was thought that microwave irradiation could enable conversion to occur at milder conditions than those conventionally used, coupled with a more effective use of hydrogen. The latter could lead to lower operating costs making the process cost effective. However, in practice excessive coke deposition took place leading to negative total conversion. This was probably due to a very low hydrogen pressure, unable to have any hydro cracking effect even under microwave irradiation. The decomposition of bio-oil under microwave irradiation was studied, aiming to identify the extent to which the properties of bio-oil change as a function of time, temperature, mode of heating, presence of char and catalyst. This information would be helpful not only for upgrading bio-oil to transport fuels, but also for any potential fuel application. During this study the rate constants of bio-oil's decomposition were calculated assuming first order kinetics.
Resumo:
Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε) of few-layer graphene and MoS2 is tunable by external electric fields (E ext). We show that at low fields (E ext < 0.01 V/Å) ε assumes a nearly constant value ∼4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered. All these results provide key information about control and understanding of the screening properties in two-dimensional crystals beyond graphene and MoS2
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Purpose: The aim of this review was to systematically evaluate and compare the frequency of veneer chipping and core fracture of zirconia fixed dental prostheses (FOPS) and porcelain-fused-to-metal (PFM) FDPs and determine possible influencing factors. Materials and Methods: The SCOPUS database and International Association of Dental Research abstracts were searched for clinical studies involving zirconia and PFM FDPs. Furthermore, studies that were integrated into systematic reviews on PFM FDPs were also evaluated. The principle investigators of any clinical studies on zirconia FDPs were contacted to provide additional information. Based on the available information for each FOP, a data file was constructed. Veneer chipping was divided into three grades (grade 1 = polishing, grade 2 = repair, grade 3 = replacement). To assess the frequency of veneer chipping and possible influencing factors, a piecewise exponential model was used to adjust for a study effect. Results: None of the studies on PFM FDPs (reviews and additional searching) sufficiently satisfied the criteria of this review to be included. Thirteen clinical studies on zirconia FDPs and two studies that investigated both zirconia and PFM FDPs were identified. These studies involved 664 zirconia and 134 PFM FDPs at baseline. Follow-up data were available for 595 zirconia and 127 PFM FDPs. The mean observation period was approximately 3 years for both groups. The frequency of core fracture was less than 1% in the zirconia group and 0% in the PFM group. When all studies were included, 142 veneer chippings were recorded for zirconia FDPs (24%) and 43 for PFM FDPs (34%). However, the studies differed extensively with regard to veneer chipping of zirconia: 85% of all chippings occurred in 4 studies, and 43% of all chippings included zirconia FDPs. If only studies that evaluated both types of core materials were included, the frequency of chipping was 54% for the zirconia-supported FDPs and 34% for PFM FDPs. When adjusting the survival rate for the study effect, the difference between zirconia and PFM FDPs was statistically significant for all grades of chippings (P = .001), as well as for chipping grade 3 (P = .02). If all grades of veneer chippings were taken into account, the survival of PFM FDPs was 97%, while the survival rate of the zirconia FDPs was 90% after 3 years for a typical study. For both PFM and zirconia FDPs, the frequency of grades 1 and 2 veneer chippings was considerably higher than grade 3. Veneer chipping was significantly less frequent in pressed materials than in hand-layered materials, both for zirconia and PFM FDPs (P = .04). Conclusions: Since the frequency of veneer chipping was significantly higher in the zirconia FDPs than PFM FDPs, and as refined processing procedures have started to yield better results in the laboratory, new clinical studies with these new procedures must confirm whether the frequency of veneer chipping can be reduced to the level of PFM. Int J Prosthodont 2010;23:493-502