998 resultados para photon spectra


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effects of niobium beam filtration on absorbed doses, on image density and contrast, and on photon spectra with conventional and high-frequency dental x-ray generators. Added niobium reduced entry and superficial absorbed doses in periapical radiography by 9% to 40% with film and digital image receptors, decreased the radiation necessary to produce a given image density on E-speed film and reduced image contrast on D- and E-speed films. As shown by increased half-value layers for aluminum, titanium, and copper and by pulse-height analyses of beam spectra, niobium increased average beam energy by 6% to 19%. Despite the benefits of adding niobium on patient dose reduction and on narrowing the beams' energy spectra, the beam can be overhardened. Adding niobium, therefore, strikes the best balance between radiation dose reduction and beam attenuation, with its risks of increased exposure times, motion blur, and diminished image contrast, when it is used at modest thicknesses (30 μm) and at lower kVp (70) settings. © 1995 Mosby-Year Book, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different codes are used for Monte Carlo (MC) calculations in radiation therapy. In this research, MCNP4C and GEANT3 codes have been compared in calculations of dosimetric characteristics of Varian Clinac 2300C/D. The parameters of influence in the differences seen in dosimetric features were discussed. This study emphasizes that both MCNP4C and GEANT3 MC can be used in radiation therapy computations and their differences in photon spectra calculations have a negligible effect on percentage depth dose computations in radiation therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurement of the absorbed dose from ionizing radiation in medical applications is an essential component to providing safe and reproducible patient care. There are a wide variety of tools available for measuring radiation dose; this work focuses on the characterization of two common, solid-state dosimeters in medical applications: thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). There were two main objectives to this work. The first objective was to evaluate the energy dependence of TLD and OSLD for non-reference measurement conditions in a radiotherapy environment. The second objective was to fully characterize the OSLD nanoDot in a CT environment, and to provide validated calibration procedures for CT dose measurement using OSLD. Current protocols for dose measurement using TLD and OSLD generally assume a constant photon energy spectrum within a nominal beam energy regardless of measurement location, tissue composition, or changes in beam parameters. Variations in the energy spectrum of therapeutic photon beams may impact the response of TLD and OSLD and could thereby result in an incorrect measure of dose unless these differences are accounted for. In this work, we used a Monte Carlo based model to simulate variations in the photon energy spectra of a Varian 6MV beam; then evaluated the impact of the perturbations in energy spectra on the response of both TLD and OSLD using Burlin Cavity Theory. Energy response correction factors were determined for a range of conditions and compared to measured correction factors with good agreement. When using OSLD for dose measurement in a diagnostic imaging environment, photon energy spectra are often referenced to a therapy-energy or orthovoltage photon beam – commonly 250kVp, Co-60, or even 6MV, where the spectra are substantially different. Appropriate calibration techniques specifically for the OSLD nanoDot in a CT environment have not been presented in the literature; furthermore the dependence of the energy response of the calibration energy has not been emphasized. The results of this work include detailed calibration procedures for CT dosimetry using OSLD, and a full characterization of this dosimetry system in a low-dose, low-energy setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The π-electronic excitations and excited-state geometries of trans-stilbene (tS) are found by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical Parametric Method 3 (PM3) calculations. Comprehensive comparisons with tS spectra are obtained and related to the fluorescence and topological alternation of poly(paraphenylenevinylene) (PPV). The one-photon absorption and triplet of tS correspond, respectively, to singlet and triplet bipolarons confined to two phenyls, while the tS2- ground state is a confined charged bipolaron. Independent estimates of the relaxation energy between vertical and adiabatic excitation show the bipolaron binding energy to depend on both charge and spin, as expected for interacting π electrons in correlated or molecular states. Complete configuration interaction within the PPP model of tS accounts for the singlet-triplet gap, for the fine-structure constants and triplet-triplet spectra, for two-photon transitions and intensities, and for one-photon spectra and the radiative lifetime, although the relative position of nearly degenerate covalent and ionic singlets is not resolved. The planar PM3 geometry and low rotational barrier of tS agree with resolved rotational and vibrational spectra in molecular beams. PM3 excitation and relaxation energies for tS bipolarons are consistent with experiment and with PPP results. Instead of the exciton model, we interpret tS excitations in terms of states that are localized on each ring or extended over an alternating chain, as found exactly in Hückel theory, and find nearly degenerate transitions between extended and localized states in the singlet, triplet, and dianion manifolds. The large topological alternation of the extended system increases the ionicity and interchanges the order of the lowest one- and two-photon absorption of PPV relative to polyenes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conversion coefficients from air kerma to ICRU operational dose equivalent quantities for ENEA’s realization of the X-radiation qualities L10-L35 of the ISO “Low Air Kerma rate” series (L), N10-N40 of the ISO “Narrow spectrum” series (N) and H10-H60 of the ISO “High Air-kerma rate” (H) series and two beams at 5 kV and 7.5 kV were determined by utilising X-ray spectrum measurements. The pulse-height spectra were measured using a planar high-purity germanium spectrometer (HPGe) and unfolded to fluence spectra using a stripping procedure then validate with using Monte Carlo generated data of the spectrometer response. HPGe portable detector has a diameter of 8.5 mm and a thickness of 5 mm. The entrance window of the crystal is collimated by a 0.5 mm thick Aluminum ring to an open diameter of 6.5 mm. The crystal is mounted at a distance of 5 mm from the Berillium window (thickness 25.4 micron). The Monte Carlo method (MCNP-4C) was used to calculate the efficiency, escape and Compton curves of a planar high-purity germanium detector (HPGe) in the 5-60 keV energy. These curves were used for the determination of photon spectra produced by the X-ray machine SEIFERT ISOVOLT 160 kV in order to allow a precise characterization of photon beams in the low energy range, according to the ISO 4037. The detector was modelled with the MCNP computer code and validated with experimental data. To verify the measuring and the stripping procedure, the first and the second half-value layers and the air kerma rate were calculated from the counts spectra and compared with the values measured using an a free-air ionization chamber. For each radiation quality, the spectrum was characterized by the parameters given in ISO 4037-1. The conversion coefficients from the air kerma to the ICRU operational quantities Hp(10), Hp(0.07), H’(0.07) and H*(10) were calculated using monoenergetic conversion coefficients. The results are discussed with respect to ISO 4037-4, and compared with published results for low-energy X-ray spectra. The main motivation for this work was the lack of a treatment of the low photon energy region (from a few keV up to about 60 keV).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the improvement of current neutron capture therapy, several liposomal formulations of neutron capture agent gadolinium were developed and tested in a glioma cell model. Formulations were analyzed regarding physicochemical and biological parameters, such as size, zeta potential, uptake into cancer cells and performance under neutron irradiation. The neutron and photon dose derived from intracellular as well as extracellular Gd was calculated via Monte Carlo simulations and set in correlation with the reduction of cell survival after irradiation. To investigate the suitability of Gd as a radiosensitizer for photon radiation, cells were also irradiated with synchrotron radiation in addition to clinically used photons generated by linear accelerator.rnIrradiation with neutrons led to significantly lower survival for Gd-liposome-treated F98 and LN229 cells, compared to irradiated control cells and cells treated with non-liposomal Gd-DTPA. Correlation between Gd-content and -dose and respective cell survival displayed proportional relationship for most of the applied formulations. Photon irradiation experiments showed the proof-of-principle for the radiosensitizer approach, although the photon spectra currently used have to be optimized for higher efficiency of the radiosensitizer. In conclusion, the newly developed Gd-liposomes show great potential for the improvement of radiation treatment options for highly malignant glioblastoma.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A previously presented algorithm for the reconstruction of bremsstrahlung spectra from transmission data has been implemented into MATHEMATICA. Spectra vectorial algebra has been used to solve the matrix system A * F = T. The new implementation has been tested by reconstructing photon spectra from transmission data acquired in narrow beam conditions, for nominal energies of 6, 15, and 25 MV. The results were in excellent agreement with the original calculations. Our implementation has the advantage to be based on a well-tested mathematical kernel. Furthermore it offers a comfortable user interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the 2PA absorption spectrum of a family of perylene tetracarboxylic derivatives ( PTCDs): bis( benzimidazo) perylene ( AzoPTCD), bis( benzimidazo) thioperylene ( Monothio BZP), n-pentylimidobenzimidazoperylene ( PazoPTCD), and bis( n-butylimido) perylene ( BuPTCD). These compounds present extremely high two-photon absorption, which makes them attractive for applications in photonics devices. The two-photon absorption cross-section spectra of perylene derivatives obtained via Z-scan technique were fitted by means of a sum-over-states ( SOS) model, which described with accuracy the different regions of the 2PA cross-section spectra. Frontier molecular orbital calculations show that all molecules present similar features, indicating that nonlinear optical properties in PTCDs are mainly determined by the central portion of the molecule, with minimal effect from the lateral side groups. In general, our results pointed out that the differences in the 2PA cross-sections among the compounds are mainly due to the nonlinearity resonance enhancement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.