995 resultados para phase-jump pulse
Resumo:
This work presents a new high power factor three-phase rectifier based on a Y-connected differential autotransformer with reduced kVA and 18-pulse input current followed by three DC-DC boost converters. The topology provides a regulated output voltage and natural three-phase input power factor correction. The lowest input current harmonic components are the 17th and the 19th. Three boost converters, with constant input currents and regulated parallel connected output voltages are used to process 4kW each one. Analytical results from Fourier analyses of winding currents and the vector diagram of winding voltages are presented. Simulation results to verify the proposed concept and experimental results are shown in the paper.
Resumo:
This study describes an optimised modulation strategy based on switching state sequences for the hybrid-clamped multilevel converter. Two key control variables defined as 'phase shift angle' and 'switching state change' for a five-level hybrid-clamped inverter are proposed to improve all switches' operation, and by changing their values, different control methods can be obtained for modulation optimisation purposes. Two example methods can solve the voltage imbalance problem of the dc-link capacitors and furthermore avoid two switches' simultaneous switching transitions and improve the inverter's performance as compared with the traditional phase disposition pulse-width modulation strategy. A 6 kW prototype inverter is developed and a range of simulation and experiments are carried out for validation. It is found that simulation and experimental results are in a good agreement and the proposed modulation strategy is verified in terms of low-order harmonic reduction.
Resumo:
OBJETIVO: O objetivo deste trabalho foi estudar a grandeza practical peak voltage (PPV), determinada a partir da forma de onda de tensão aplicada a tubos radiológicos, e compará-la com algumas definições de kVp para diferentes tipos de geradores: monofásico (onda completa, clínico), trifásico (seis pulsos, clínico) e potencial constante (industrial). MATERIAIS E MÉTODOS: O trabalho envolveu a comparação do PPV medido invasivamente (utilizando um divisor de tensão) com a resposta de dois medidores comerciais não invasivos, além dos valores de outras grandezas usadas para medição da tensão de pico aplicada ao tubo de raios X, e a análise da variação do PPV com a ondulação percentual da tensão (ripple). RESULTADOS: Verificou-se que a diferença entre o PPV e as definições mais comuns de tensão de pico aumenta com o ripple. Os valores de PPV variaram em até 3% e 5%, respectivamente, na comparação entre medições invasivas e não invasivas feitas com os equipamentos trifásico e monofásico. CONCLUSÃO: Os resultados demonstraram que a principal grandeza de influência que afeta o PPV é o ripple da tensão. Adicionalmente, valores de PPV obtidos com medidores não invasivos devem ser avaliados considerando que eles dependem da taxa de aquisição e da forma de onda adquirida pelo instrumento.
Resumo:
Bending fatigue tests were carried out to clarify the effects of heat treatment parameters: temperature and time after cadmium electroplating on a high strength steel, to avoid hydrogen embrittlement. Temperatures heat of 190 degrees C, 230 degrees C, 250 degrees C and 300 degrees C at 3, 8 and 24 hours together with the base material electroplated, with and without heat treatment, resulted in 14 conditions studied with respect to fatigue behaviour. Statistical data analysis was performed to identify the best combination temperature/time regarding fatigue strength of the ABNT 4340 steel and the results obtained revealed that the fatigue strength depend on temperature/time conditions.
Resumo:
This paper presents an improved analysis of a novel Programmable Power-factor-corrected-Based Hybrid Multipulse Power Rectifier (PFC-HMPR) for utility interface of power electronic converters. The proposed hybrid multipulse rectifier is composed of an ordinary three-phase six-pulse diode-bridge rectifier (Graetz bridge) with a parallel connection of single-phase switched converters in each three-phase rectifier leg. In this paper, the authors present a complete discussion about the controlled rectifiers' power contribution and also a complete analysis concerning the total harmonic distortion of current that can be achieved when the proposed converter operates as a conventional 12-pulse rectifier. The mathematical analysis presented in this paper corroborate, with detailed equations, the experimental results of two 6-kW prototypes implemented in a laboratory.
Resumo:
A novel hybrid three-phase rectifier is proposed. It is capable to achieve high input power factor (PF) and low total harmonic input currents distortion (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase six-pulse diode rectifier (Graetz bridge) with a parallel connection of single-phase Sepic rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this work describes its principles, with detailed operation, simulation, experimental results, and discussions on power rating of the required Sepic converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Sepic converters, making the proposed solution economically viable for very high power installations, with fast investment payback. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing dc-link. A prototype has been implemented in the laboratory and it was fully demonstrated to both operate with excellent performance and be feasibly implemented in higher power applications.
Resumo:
A novel hybrid high power rectifier capable to achieve unity power factor is proposed in this paper. Single-phase SEPIC rectifiers are associated in parallel with each leg of three-phase 6-pulse diode rectifier resulting in a programmable input current waveform structure. In this paper it is described the principles of operation of the proposed converter with detailed simulation and experimental results. For a total harmonic distortion of the input line current (THDI) less than 2% the rated power of the SEPIC rectifiers is 33%. Therefore, power rating of the SEPIC parallel converters is a fraction of the output power, on the range of 20% to 33% of the nominal output power, making the proposed solution economically viable for high power installations, with fast pay back of the investment. Moreover, retrofits to existing installations are also possible with this proposed topology, since the parallel path can be easily controlled by integration with the already existing de-link. Experimental results are presented for a 3 kW implemented prototype, in order to verify the developed analysis.
Resumo:
A CMOS/SOI circuit to decode PWM signals is presented as part of a body-implanted neurostimulator for visual prosthesis. Since encoded data is the sole input to the circuit, the decoding technique is based on a double-integration concept and does not require dc filtering. Nonoverlapping control phases are internally derived from the incoming pulses and a fast-settling comparator ensures good discrimination accuracy in the megahertz range. The circuit was integrated on a 2 mu m single-metal SOI fabrication process and has an effective area of 2mm(2) Typically, the measured resolution of encoding parameter a was better than 10% at 6MHz and V-DD=3.3V. Stand-by consumption is around 340 mu W. Pulses with frequencies up to 15MHz and alpha = 10% can be discriminated for V-DD spanning from 2.3V to 3.3V. Such an excellent immunity to V-DD deviations meets a design specification with respect to inherent coupling losses on transmitting data and power by means of a transcutaneous link.
Resumo:
This paper proposes an online sensorless rotor position estimation technique for switched reluctance motors (SRMs) using just one current sensor. It is achieved by first decoupling the excitation current from the bus current. Two phase-shifted pulse width modulation signals are injected into the relevant lower transistors in the asymmetrical half-bridge converter for short intervals during each current fundamental cycle. Analog-to-digital converters are triggered in the pause middles of the dual pulse to separate the bus current for excitation current recognition. Next, the rotor position is estimated from the excitation current, by a current-rise-time method in the current-chopping-control mode in a low-speed operation and a current-gradient method in the voltage-pulse-control mode in a high-speed operation. The proposed scheme requires only a bus current sensor and a minor change to the converter circuit, without a need for individual phase current sensors or additional detection devices, achieving a more compact and cost-effective drive. The performance of the sensorless SRM drive is fully investigated. The simulation and experiments on a 750-W three-phase 12/8-pole SRM are carried out to verify the effectiveness of the proposed scheme.
Resumo:
We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.