143 resultados para pharmacogenetics
Resumo:
Hypertension is a leading cause of cardiovascular mortality, but only one third of patients achieve blood pressure goals despite antihypertensive therapy. Genetic polymorphisms may partially account for the interindividual variability and abnormal response to antihypertensive drugs. Candidate gene and genome-wide approaches have identified common genetic variants associated with response to antihypertensive drugs. However, there is no currently available pharmacogenetic test to guide hypertension treatment in clinical practice. In this review, we aimed to summarize the recent findings on pharmacogenetics of the most commonly used antihypertensive drugs in clinical practice, including diuretics, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, beta-blockers and calcium channel blockers. Notably, only a small percentage of the genetic variability on response to antihypertensive drugs has been explained, and the vast majority of the genetic variants associated with antihypertensives efficacy and toxicity remains to be identified. Despite some genetic variants with evidence of association with the variable response related to these most commonly used antihypertensive drug classes, further replication is needed to confirm these associations in different populations. Further studies on epigenetics and regulatory pathways involved in the responsiveness to antihypertensive drugs might provide a deeper understanding of the physiology of hypertension, which may favor the identification of new targets for hypertension treatment and genetic predictors of antihypertensive response.Journal of Human Hypertension advance online publication, 28 August 2014; doi:10.1038/jhh.2014.76.
Resumo:
Aims: The relationship between variants in SLCO1B1 and SLCO2B1 genes and lipid-lowering response to atorvastatin was investigated. Material and Methods: One-hundred-thirty-six unrelated individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). They were genotyped with a panel of ancestry informative markers for individual African component of ancestry (ACA) estimation by SNaPshot (R) and SLCO1B1 (c.388A>G, c.463C>A and c.521T>C) and SLCO2B1 (-71T>C) gene polymorphisms were identified by TaqMan (R) Real-time PCR. Results: Subjects carrying SLCO1B1 c.388GG genotype exhibited significantly high low-density lipoprotein (LDL) cholesterol reduction relative to c.388AA+c.388AG carriers (41 vs. 37%, p = 0.034). Haplotype analysis revealed that homozygous of SLCO1B1*15 (c.521C and c.388G) variant had similar response to statin relative to heterozygous and non-carriers. A multivariate logistic regression analysis confirmed that c.388GG genotype was associated with higher LDL cholesterol reduction in the study population (OR: 3.2, CI95%: 1.3-8.0, p < 0.05). Conclusion: SLCO1B1 c.388A>G polymorphism causes significant increase in atorvastatin response and may be an important marker for predicting efficacy of lipid-lowering therapy.
Resumo:
Much of the individual variation in drug response is due to genetic drug metabolic polymorphisms. Clinically relevant examples include acetylator status; cytochrome P450 2D6, 2C9 and 2C19 polymorphisms; and thiopurine methyltransferase deficiency. It is important to be aware of which drugs are subject to pharmacogenetic variability. In the future, population-based pharmacogenetic testing will allow more individualized drug treatment and will avoid the current empiricism.
Resumo:
Besides CYP2B6, other polymorphic enzymes contribute to efavirenz (EFV) interindividual variability. This study was aimed at quantifying the impact of multiple alleles on EFV disposition. Plasma samples from 169 human immunodeficiency virus (HIV) patients characterized for CYP2B6, CYP2A6, and CYP3A4/5 allelic diversity were used to build up a population pharmacokinetic model using NONMEM (non-linear mixed effects modeling), the aim being to seek a general approach combining genetic and demographic covariates. Average clearance (CL) was 11.3 l/h with a 65% interindividual variability that was explained largely by CYP2B6 genetic variation (31%). CYP2A6 and CYP3A4 had a prominent influence on CL, mostly when CYP2B6 was impaired. Pharmacogenetics fully accounted for ethnicity, leaving body weight as the only significant demographic factor influencing CL. Square roots of the numbers of functional alleles best described the influence of each gene, without interaction. Functional genetic variations in both principal and accessory metabolic pathways demonstrate a joint impact on EFV disposition. Therefore, dosage adjustment in accordance with the type of polymorphism (CYP2B6, CYP2A6, or CYP3A4) is required in order to maintain EFV within the therapeutic target levels.
Resumo:
To examine the genetic factors influencing clozapine kinetics in vivo, 75 patients treated with clozapine were genotyped for CYPs and ABCB1 polymorphisms and phenotyped for CYP1A2 and CYP3A activity. CYP1A2 activity and dose-corrected trough steady-state plasma concentrations of clozapine correlated significantly (r = -0.61; P = 1 x 10), with no influence of the CYP1A2*1F genotype (P = 0.38). CYP2C19 poor metabolizers (*2/*2 genotype) had 2.3-fold higher (P = 0.036) clozapine concentrations than the extensive metabolizers (non-*2/*2). In patients comedicated with fluvoxamine, a strong CYP1A2 inhibitor, clozapine and norclozapine concentrations correlate with CYP3A activity (r = 0.44, P = 0.075; r = 0.63, P = 0.007, respectively). Carriers of the ABCB1 3435TT genotype had a 1.6-fold higher clozapine plasma concentrations than noncarriers (P = 0.046). In conclusion, this study has shown for the first time a significant in vivo role of CYP2C19 and the P-gp transporter in the pharmacokinetics of clozapine. CYP1A2 is the main CYP isoform involved in clozapine metabolism, with CYP2C19 contributing moderately, and CYP3A4 contributing only in patients with reduced CYP1A2 activity. In addition, ABCB1, but not CYP2B6, CYP2C9, CYP2D6, CYP3A5, nor CYP3A7 polymorphisms, influence clozapine pharmacokinetics.
Resumo:
BACKGROUND:HIV-1-infected patients vary considerably by their response to antiretroviral treatment, drug concentrations in plasma, toxic events, and rate of immune recovery. This variability could have a genetic basis. We did a pharmacogenetics study to analyse the association between response to antiretroviral treatment and allelic variants of several genes. METHODS:In 123 patients, we did PCR analyses of the gene for the multidrug-resistance transporter (MDR1), which codes for P-glycoprotein, of genes coding for isoenzymes of cytochrome P450, CYP3A4, CYP3A5, CYP2D6, and CYP2C19, and of the gene for the chemokine receptor CCR5. We measured concentrations in plasma of the antiretroviral agents efavirenz and nelfinavir by high-performance liquid-chromatography, and measured levels of P-glycoprotein expression, CD4-cell count, and HIV-1 viraemia. FINDINGS: Median drug concentrations in patients with the MDR1 3435 TT, CT, and CC genotypes were at the 30th, 50th, and 75th percentiles, respectively (p=0.0001). In patients with CYP2D6 extensive-metaboliser or poor-metaboliser alleles, median drug concentrations were at percentiles 45 and 62.5, respectively (p=0.04). Patients with the MDR1 TT genotype 6 months after starting treatment had a greater rise in CD4-cell count (257 cells/microL) than patients with the CT (165 cells/microL) and CC (121 cells/microL) genotype (p=0.0048), and the best recovery of naïve CD4-cells. INTERPRETATION:The polymorphism MDR1 3435 C/T predicts immune recovery after initiation of antiretroviral treatment. This finding suggests that P-glycoprotein has an important role in admittance of antiretroviral drugs to restricted compartments in vivo.
Resumo:
Wake-promoting drugs are widely used to treat excessive daytime sleepiness. The neuronal pathways involved in wake promotion are multiple and often not well characterized. We tested d-amphetamine, modafinil, and YKP10A, a novel wake-promoting compound, in three inbred strains of mice. The wake duration induced by YKP10A and d-amphetamine depended similarly on genotype, whereas opposite strain differences were observed after modafinil. Electroencephalogram (EEG) analysis during drug-induced wakefulness revealed a transient approximately 2 Hz slowing of theta oscillations and an increase in beta-2 (20-35 Hz) activity only after YKP10A. Gamma activity (35-60 Hz) was induced by all drugs in a drug- and genotype-dependent manner. Brain transcriptome and clustering analyses indicated that the three drugs have both common and specific molecular signatures. The correlation between specific EEG and gene-expression signatures suggests that the neuronal pathways activated to stay awake vary among drugs and genetic background.
Resumo:
Résumé : Dans le but d'examiner les facteurs génétiques qui influencent la pharmacocinétique de la clozapine in vivo, 75 patients traités avec ce médicament antipsychotique ont été genotypés pour les polymorphismes CYP et ABCB1, et phénotypés pour l'activité de CYP1A2 et CYP3A. L'activité de CYP1A2 et les taux plasmatiques de clozapine en steady-state corrèlent d'une manière significative (r=0.61; p=1x10), sans influence du génotype de CYP1A2*1F (p=0.38). Les métaboliseurs déficients CYP2C19 (génotype *2/*2 genotype) avaient des concentrations de clozapine 2,3 fois (p=0.036) plus élevées que les métaboliseurs rapides (non*2/*2). Chez les patients comédiqués avec la fluvoxamine, un fort inhibiteur de CYP1A2, les concentrations de clozapine et de norclozapine corrèlent significativement avec l'activité de CYP3A (r=0.44, p=0.075; r=0.63, p=0.007, respectivement). Les porteurs du génotype ABC81 3435TT avaient des concentrations plasmatiques de clozapine 1,6 fois plus élevées que ceux qui ne présentaient pas ce génotype (p=0.046). En conclusion, cette étude montre pour la première fois, in vivo, le rôle significatif de CYP2C19 et celui du transporteur P-gp dans la pharmacocinétique de la clozapine. Le CYP1A2 est la forme principale de CYP impliquée dans le métabolisme de clozapine, tandis que le CYP2C19 joue un rôle modéré et que le CYP3A4 n'y contribue que chez les patients qui présentent une activité de CYP1A2 réduite. De plus, le polymorphisme de ABC81, mais pas ceux de CYP2B6, CYP2C9, CYP2D6, CYP3A5 et CYP3A7, influence la pharmacocinétique de la clozapine. Abstract : To examine the genetic factors influencing clozapine kinetics in vivo, 75 patients treated with clozapine were gcnotyped for CYPs and ABCBI polymorphisms and phenotyped for CYPIA2 and CYP3A activity. CYPIA2 activity and dose-corrected trough stéady-state plasma concentrations of clozapine correlated significantly (r = -0.61; P = 1 x 10 pow(-6), with no influence of the CYPIA2*IF genotype (P = 0.38). CYP2C 19 poor metabolizers (*2/*2 genotype) had 2.3-fold higher (P = 0.036) clozapine concentrations than the extensive metabolizers (non-*2/*2). In patients comedicated with fluvoxamine, a strong CYPlA2 inhibitor, clozapine and norclozapine concentrations correlate with CYP3A activity (r = 0.44, P = 0.075; r = 0.63, P = 0.007, respectively). Carriers of the ABCB1 3435TT genotype had a 1.6-fold higher clozapine plasma concentrations than noncarriers (P = 0.046). In conclusion, this study has shown for the first time a significant in vivo role of CYP2C19 and the P-gp transporter in the pharmacokinetics of clozapine. CYPlA2 is the main CYP isoform involved in clozapine metabolism, with CYP2C19 contributing moderately, and CYP3A4 contributing only in patients with reduced CYPIA2 activity. In addition, ABCBI, but not CYP1B6, CYP1C9, CYP1D6, CYP3A5, nor CYP3A7 polymorphisms, influence clozapine pharmacokinetics.
Resumo:
The objectives of this study were to characterize raltegravir (RAL) population pharmacokinetics in HIV-positive (HIV(+)) and healthy individuals, identify influential factors, and search for new candidate genes involved in UDP glucuronosyltransferase (UGT)-mediated glucuronidation. The pharmacokinetic analysis was performed with NONMEM. Genetic association analysis was performed with PLINK using the relative bioavailability as the phenotype. Simulations were performed to compare once- and twice-daily regimens. A 2-compartment model with first-order absorption adequately described the data. Atazanavir, gender, and bilirubin levels influenced RAL relative bioavailability, which was 30% lower in HIV(+) than in healthy individuals. UGT1A9*3 was the only genetic variant possibly influencing RAL pharmacokinetics. The majority of RAL pharmacokinetic variability remains unexplained by genetic and nongenetic factors. Owing to the very large variability, trough drug levels might be very low under the standard dosing regimen, raising the question of a potential relevance of therapeutic drug monitoring of RAL in some situations.
Resumo:
Pharmacogenetics, the study of how individual genetic profiles influence the response to drugs, is an important topic. Results from pharmacogenetics studies in various clinical settings may lead to personalized medicine. Herein, we present the most important concepts of this discipline, as well as currently-used study methods.
Resumo:
Introduction: Besides therapeutic effectiveness, drug tolerability is a key issue for treatments that must be taken indefinitely. Given the high prevalence of toxicity in HIV therapy, the factors implicated in drug-induced morbidities should be identified in order to improve the safety, tolerability and adherence to the treatments. Current approaches have focused almost exclusively on parent drug concentrations; whereas recent evidence suggests that drug metabolites resulting from complex genetic and environmental influences can also contribute to treatment outcome. Pharmacogenetic variations have shown to play a relevant role in the variability observed in antiretroviral drug exposure, clinical response and sometimes toxicity. The integration of pharmacokinetic, pharmacogenetic and metabolic determinants will more probably address current therapeutic needs in patients. Areas covered: This review offers a concise description of three classes of antiretroviral drugs. The review looks at the metabolic profile of these drugs and gives a comprehensive summary of the existing literature on the influence of pharmacogenetics on their pharmacokinetics and metabolic pathways, and the associated drug or metabolite toxicity. Expert opinion: Due to the high prevalence of toxicity and the related risk of low adherence to the treatments, association of kinetic, genetic and metabolic markers predictive of therapeutic or toxicity outcomes could represent a more complete approach for optimizing antiretroviral therapy.
Resumo:
ABSTRACT: Pharmacogenetic tests and therapeutic drug monitoring may considerably improve the pharmacotherapy of depression. The aim of this study was to evaluate the relationship between the efficacy of mirtazapine (MIR) and the steady-state plasma concentrations of its enantiomers and metabolites in moderately to severely depressed patients, taking their pharmacogenetic status into account. Inpatients and outpatients (n = 45; mean age, 51 years; range, 19-79 years) with major depressive episode received MIR for 8 weeks (30 mg/d on days 1-14 and 30-45 mg/d on days 15-56). Mirtazapine treatment resulted in a significant improvement in mean Hamilton Depression Rating Scale total score at the end of the study (P < 0.0001). There was no evidence for a significant plasma concentration-clinical effectiveness relationship regarding any pharmacokinetic parameter. The enantiomers of MIR and its hydroxylated (OH-MIR) and demethylated (DMIR) metabolites in plasma samples on days 14 and 56 were influenced by sex and age. Nonsmokers (n = 28) had higher mean MIR plasma levels than smokers (n = 17): S(+)-enantiomer of MIR, 9.4 (SD, 3.9) versus 6.2 (SD, 5.5) ng/mL (P = 0.005); R(-)-enantiomer of MIR, 24.4 (SD, 6.5) versus 18.5 (SD, 4.1) ng/mL (P = 0.003). Only in nonsmokers, plasma levels of S(+)-enantiomer of MIR and metabolites depended on the CYP2D6 genotype. Therefore, high CYP1A2 activity seen in smokers seems to mask the influence of the CYP2D6 genotype. In patients presenting the CYP2B6 *6/*6 genotype (n = 8), S-OH-MIR concentrations were higher those in the other patients (n = 37). Although it is not known if S-OH-MIR is associated with the therapeutic effect of MIR, the reduction of the Hamilton scores was significantly (P = 0.016) more pronounced in the CYP2B6 *6/*6-genotyped patients at the end of the study. The role of CYP2B6 in the metabolism and effectiveness of MIR should be further investigated.
Resumo:
HIV-infected individuals may have accelerated atherogenesis and an increased risk for premature coronary artery disease. Dyslipidemia represents a key pro-atherogenic mechanism. In HIV-infected patients, dyslipidemia is typically attributed to the adverse effects of antiretroviral therapy. Nine recent genome-wide association studies have afforded a comprehensive, unbiased inventory of common SNPs at 36 genetic loci that are reproducibly associated with dyslipidemia in the general population. Genome-wide association study-validated SNPs have now been demonstrated to contribute to dyslipidemia in the setting of HIV infection and antiretroviral therapy. In a Swiss HIV-infected study population, a similar proportion of serum lipid variability was explained by antiretroviral therapy and by genetic background. In the individual patient, both antiretroviral therapy and the cumulative effect of SNPs contribute to the risk of high low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol and hypertriglyceridemia. Genetic variants presumably contribute to additional major metabolic complications in HIV-infected individuals, including diabetes mellitus and coronary artery disease. In an effort to explain an increasing proportion of the heritability of complex metabolic traits, ongoing large-scale gene resequencing studies are focusing on the effects of rare SNPs and structural genetic variants.