970 resultados para pervasive signals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding user contexts and group structures plays a central role in pervasive computing. These contexts and community structures are complex to mine from data collected in the wild due to the unprecedented growth of data, noise, uncertainties and complexities. Typical existing approaches would first extract the latent patterns to explain the human dynamics or behaviors and then use them as the way to consistently formulate numerical representations for community detection, often via a clustering method. While being able to capture high-order and complex representations, these two steps are performed separately. More importantly, they face a fundamental difficulty in determining the correct number of latent patterns and communities. This paper presents an approach that seamlessly addresses these challenges to simultaneously discover latent patterns and communities in a unified Bayesian nonparametric framework. Our Simultaneous Extraction of Context and Community (SECC) model roots in the nested Dirichlet process theory which allows nested structure to be built to explain data at multiple levels. We demonstrate our framework on three public datasets where the advantages of the proposed approach are validated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops machine learning techniques to discover activities and contexts from pervasive sensor data. These techniques are especially suitable for streaming sensor data as they can infer the context space automatically. They are applicable in many real world applications such as activity monitoring or organization management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding user contexts and group structures plays a central role in pervasive computing. These contexts and community structures are complex to mine from data collected in the wild due to the unprecedented growth of data, noise, uncertainties and complexities. Typical existing approaches would first extract the latent patterns to explain human dynamics or behaviors and then use them as a way to consistently formulate numerical representations for community detection, often via a clustering method. While being able to capture high-order and complex representations, these two steps are performed separately. More importantly, they face a fundamental difficulty in determining the correct number of latent patterns and communities. This paper presents an approach that seamlessly addresses these challenges to simultaneously discover latent patterns and communities in a unified Bayesian nonparametric framework. Our Simultaneous Extraction of Context and Community (SECC) model roots in the nested Dirichlet process theory which allows a nested structure to be built to summarize data at multiple levels. We demonstrate our framework on five datasets where the advantages of the proposed approach are validated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low cost pervasive electrocardiogram (ECG) monitors is changing how sinus arrhythmia are diagnosed among patients with mild symptoms. With the large amount of data generated from long-term monitoring, come new data science and analytical challenges. Although traditional rule-based detection algorithms still work on relatively short clinical quality ECG, they are not optimal for pervasive signals collected from wearable devices - they don't adapt to individual difference and assume accurate identification of ECG fiducial points. To overcome these short-comings of the rule-based methods, this paper introduces an arrhythmia detection approach for low quality pervasive ECG signals. To achieve the robustness needed, two techniques were applied. First, a set of ECG features with minimal reliance on fiducial point identification were selected. Next, the features were normalized using robust statistics to factors out baseline individual differences and clinically irrelevant temporal drift that is common in pervasive ECG. The proposed method was evaluated using pervasive ECG signals we collected, in combination with clinician validated ECG signals from Physiobank. Empirical evaluation confirms accuracy improvements of the proposed approach over the traditional clinical rules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hidden patterns and contexts play an important part in intelligent pervasive systems. Most of the existing works have focused on simple forms of contexts derived directly from raw signals. High-level constructs and patterns have been largely neglected or remained under-explored in pervasive computing, mainly due to the growing complexity over time and the lack of efficient principal methods to extract them. Traditional parametric modeling approaches from machine learning find it difficult to discover new, unseen patterns and contexts arising from continuous growth of data streams due to its practice of training-then-prediction paradigm. In this work, we propose to apply Bayesian nonparametric models as a systematic and rigorous paradigm to continuously learn hidden patterns and contexts from raw social signals to provide basic building blocks for context-aware applications. Bayesian nonparametric models allow the model complexity to grow with data, fitting naturally to several problems encountered in pervasive computing. Under this framework, we use nonparametric prior distributions to model the data generative process, which helps towards learning the number of latent patterns automatically, adapting to changes in data and discovering never-seen-before patterns, contexts and activities. The proposed methods are agnostic to data types, however our work shall demonstrate to two types of signals: accelerometer activity data and Bluetooth proximal data. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental task in pervasive computing is reliable acquisition of contexts from sensor data. This is crucial to the operation of smart pervasive systems and services so that they might behave efficiently and appropriately upon a given context. Simple forms of context can often be extracted directly from raw data. Equally important, or more, is the hidden context and pattern buried inside the data, which is more challenging to discover. Most of existing approaches borrow methods and techniques from machine learning, dominantly employ parametric unsupervised learning and clustering techniques. Being parametric, a severe drawback of these methods is the requirement to specify the number of latent patterns in advance. In this paper, we explore the use of Bayesian nonparametric methods, a recent data modelling framework in machine learning, to infer latent patterns from sensor data acquired in a pervasive setting. Under this formalism, nonparametric prior distributions are used for data generative process, and thus, they allow the number of latent patterns to be learned automatically and grow with the data - as more data comes in, the model complexity can grow to explain new and unseen patterns. In particular, we make use of the hierarchical Dirichlet processes (HDP) to infer atomic activities and interaction patterns from honest signals collected from sociometric badges. We show how data from these sensors can be represented and learned with HDP. We illustrate insights into atomic patterns learned by the model and use them to achieve high-performance clustering. We also demonstrate the framework on the popular Reality Mining dataset, illustrating the ability of the model to automatically infer typical social groups in this dataset. Finally, our framework is generic and applicable to a much wider range of problems in pervasive computing where one needs to infer high-level, latent patterns and contexts from sensor data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding human activities is an important research topic, most noticeably in assisted-living and healthcare monitoring environments. Beyond simple forms of activity (e.g., an RFID event of entering a building), learning latent activities that are more semantically interpretable, such as sitting at a desk, meeting with people, or gathering with friends, remains a challenging problem. Supervised learning has been the typical modeling choice in the past. However, this requires labeled training data, is unable to predict never-seen-before activity, and fails to adapt to the continuing growth of data over time. In this chapter, we explore the use of a Bayesian nonparametric method, in particular the hierarchical Dirichlet process, to infer latent activities from sensor data acquired in a pervasive setting. Our framework is unsupervised, requires no labeled data, and is able to discover new activities as data grows. We present experiments on extracting movement and interaction activities from sociometric badge signals and show how to use them for detecting of subcommunities. Using the popular Reality Mining dataset, we further demonstrate the extraction of colocation activities and use them to automatically infer the structure of social subgroups. © 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salutogenesis is now accepted as a part of the contemporary model of disease: an individual is not only affected by pathogenic factors in the environment, but those that promote well-being or salutogenesis. Given that "environment" extends to include the built environment, promotion of salutogenesis has become part of the architectural brief for contemporary healthcare facilities, drawing on an increasing evidence-base. Salutogenesis is inextricably linked with the notion of person-environment "fit". MyRoom is a proposal for an integrated architectural and pervasive computing model, which enhances psychosocial congruence by using real-time data indicative of the individual's physical status to enable the environment of his/her room (colour, light, temperature) to adapt on an on-going basis in response to bio-signals. This work is part of the PRTLI-IV funded programme NEMBES, investigating the use of embedded technologies in the built environment. Different care contexts require variations in the model, and iterative prototyping investigating use in different contexts will progressively lead to the development of a fully-integrated adaptive salutogenic single-room prototype.