915 resultados para personalised medicine
Resumo:
Breakthrough technologies which now enable the sequencing of individual genomes will irreversibly modify the way diseases are diagnosed, predicted, prevented and treated. For these technologies to reach their full potential requires, upstream, access to high-quality biomedical data and samples from large number of properly informed and consenting individuals and, downstream, the possibility to transform the emerging knowledge into a clinical utility. The Lausanne Institutional Biobank was designed as an integrated, highly versatile infrastructure to harness the power of these emerging technologies and catalyse the discovery and development of innovative therapeutics and biomarkers, and advance the field of personalised medicine. Described here are its rationale, design and governance, as well as parallel initiatives which have been launched locally to address the societal, ethical and technological issues associated with this new bio-resource. Since January 2013, inpatients admitted at Lausanne CHUV University Hospital have been systematically invited to provide a general consent for the use of their biomedical data and samples for research, to complete a standardised questionnaire, to donate a 10-ml sample of blood for future DNA extraction and to be re-contacted for future clinical trials. Over the first 18 months of operation, 14,459 patients were contacted, and 11,051 accepted to participate in the study. This initial 18-month experience illustrates that a systematic hospital-based biobank is feasible; it shows a strong engagement in research from the patient population in this University Hospital setting, and the need for a broad, integrated approach for the future of medicine to reach its full potential.
Resumo:
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease whose assessment and management have traditionally been based on the severity of airflow limitation (forced expiratory volume in 1 s (FEV1)). Yet, it is now clear that FEV1 alone cannot describe the complexity of the disease. In fact, the recently released Global Initiative for Chronic Obstructive Lung Disease (GOLD), 2011 revision has proposed a new combined assessment method using three variables (symptoms, airflow limitation and exacerbations). Methods Here, we go one step further and propose that in the near future physicians will need a"control panel" for the assessment and optimal management of individual patients with complex diseases, including COPD, that provides a path towards personalised medicine. Results We propose that such a"COPD control panel" should include at least three different domains of the disease: severity, activity and impact. Each of these domains presents information on different"elements" of the disease with potential prognostic value and/or with specific therapeutic requirements. All this information can be easily incorporated into an"app" for daily use in clinical practice. Conclusion We recognise that this preliminary proposal needs debate, validation and evolution (eg, including"omics" and molecular imaging information in the future), but we hope that it may stimulate debate and research in the field.
Resumo:
Background: Retrospective analyses suggest that personalized PK-based dosage might be useful for imatinib, as treatment response correlates with trough concentrations (Cmin) in cancer patients. Our objectives were to improve the interpretation of randomly measured concentrations and to confirm its efficiency before evaluating the clinical usefulness of systematic PK-based dosage in chronic myeloid leukemia patients. Methods and Results: A Bayesian method was validated for the prediction of individual Cmin on the basis of a single random observation, and was applied in a prospective multicenter randomized controlled clinical trial. 28 out of 56 patients were enrolled in the systematic dosage individualization arm and had 44 follow-up visits (their clinical follow-up is ongoing). PK-dose-adjustments were proposed in 39% having predicted Cmin significantly away from the target (1000 ng/ml). Recommendations were taken up by physicians in 57%, patients were considered non-compliant in 27%. Median Cmin at study inclusion was 754 ng/ml and differed significantly from the target (p=0.02, Wilcoxon test). On follow-up, Cmin was 984 ng/ml (p=0.82) in the compliant group. CV decreased from 46% to 27% (p=0.02, F-test). Conclusion: PK-based (Bayesian) dosage adjustment is able to bring individual drug exposure closer to a given therapeutic target. Its influence on therapeutic response remains to be evaluated.
Resumo:
Despite decades of research, therapeutic advances in non-small cell lung cancer (NSCLC) have progressed at a painstaking slow rate with few improvements in standard surgical resection for early stage disease and chemotherapy or radiotherapy for patients with advanced disease. In the past 18 months, however, we seemed to have reached an inflexion point: therapeutic advances that are centred on improvements in the understanding of patient selection, surgery that is undertaken through smaller incisions, identification of candidate mutations accompanied by the development of targeted anticancer treatments with a focus on personalised medicine, improvements to radiotherapy technology, emergence of radiofrequency ablation (RFA), and last but by no means least, the recognition of palliative care as a therapeutic modality in its own right. The contributors to this review are a distinguished international panel of experts who highlight recent advances in each of the major disciplines.
Resumo:
Mandy and Lai (2015) do the field a service in 'reclaiming' the role of pre- and postnatal environmental influences on the aetiology and course of autism spectrum conditions (ASC). This follows several decades where now discredited theories about putative psychogenic and biological disease models held sway, not least in the public mind. We discuss issues that arise from their review; including the need to identify how large the environmental influences on ASC are likely to be; the specificity of these environmental influences to ASC as opposed to a broader range of neurodevelopmental conditions and outcomes; how best to study complex interactions between genetic and environmental influences; and the promise of novel insights into their mechanisms of action. The review highlights current research that aims to better our understanding of the role of environmental factors in the aetiology and course of ASC and, in the near future, may offer the potential for personalised medicine approaches to intervention based on these discoveries.
Resumo:
This study reports on a microfluidic platform on which single multicellular spheroids from malignant pleural mesothelioma (MPM), an aggressive tumor with poor prognosis, can be loaded, trapped and tested for chemotherapeutic drug response. A new method to detect the spheroid viability cultured on the microfluidic chip as a function of the drug concentration is presented. This approach is based on the evaluation of the caspase activity in the supernatant sampled from the chip and tested using a microplate reader. This simple and time-saving method does only require a minimum amount of manipulations and was established for very low numbers of cells. This feature is particularly important in view of personalised medicine applications for which the number of cells obtained from the patients is low. MPM spheroids were continuously perfused for 48 hours with cisplatin, one of the standard chemotherapeutic drugs used to treat MPM. The 50% growth inhibitory concentration of cisplatin in perfused MPM spheroids was found to be twice as high as in spheroids cultured under static conditions. This chemoresistance increase might be due to the continuous support of nutrients and oxygen to the perfused spheroids.
Resumo:
The era of big data opens up new opportunities in personalised medicine, preventive care, chronic disease management and in telemonitoring and managing of patients with implanted devices. The rich data accumulating within online services and internet companies provide a microscope to study human behaviour at scale, and to ask completely new questions about the interplay between behavioural patterns and health. In this paper, we shed light on a particular aspect of data-driven healthcare: autonomous decision-making. We first look at three examples where we can expect data-driven decisions to be taken autonomously by technology, with no or limited human intervention. We then discuss some of the technical and practical challenges that can be expected, and sketch the research agenda to address them.
Resumo:
Background: Pharmacogenetics is a rapidly growing field that aims to identify the genes that influence drug response. This science can be used as a powerful tool to tailor drug treatment to the genetic makeup of individuals. The present study explores the coverage of the topic of pharmacogenetics and its potential benefit in personalised medicine by the UK newsprint media. Methods: The LexisNexis database was used to identify and retrieve full text articles from the 10 highest circulation national daily newspapers and their Sunday equivalents in the UK. Content analysis of newspaper articles which referenced pharmacogenetic testing was carried out. A second researcher coded a random sample (21%) of newspaper articles to establish the inter-rater reliability of coding. Results: Of the 256 articles captured by the search terms, 96 articles (with pharmacogenetics as a major component) met the study inclusion criteria. The majority of articles over-stated the benefits of pharmacogenetic testing while paying less attention to the associated risks. Overall beneficial effects were mentioned 5.3 times more frequently than risks (p < 0.001). The most common illnesses for which pharmacogenetically based personalised medicine was discussed were cancer, cardiovascular disease and CNS diseases. Only 13% of newspaper articles that cited a specific scientific study mentioned this link in the article. There was a positive correlation between the size of the article and both the number of benefits and risks stated (P < 0.01). Conclusion: More comprehensive coverage of the area of personalised medicine within the print media is needed to inform public debate on the inclusion of pharmacogentic testing in routine practice.
Resumo:
Biobanks represent key resources for clinico-genomic research and are needed to pave the way to personalised medicine. To achieve this goal, it is crucial that scientists can securely access and share high-quality biomaterial and related data. Therefore, there is a growing interest in integrating biobanks into larger biomedical information and communication technology (ICT) infrastructures. The European project p-medicine is currently building an innovative ICT infrastructure to meet this need. This platform provides tools and services for conducting research and clinical trials in personalised medicine. In this paper, we describe one of its main components, the biobank access framework p-BioSPRE (p-medicine Biospecimen Search and Project Request Engine). This generic framework enables and simplifies access to existing biobanks, but also to offer own biomaterial collections to research communities, and to manage biobank specimens and related clinical data over the ObTiMA Trial Biomaterial Manager. p-BioSPRE takes into consideration all relevant ethical and legal standards, e.g., safeguarding donors’ personal rights and enabling biobanks to keep control over the donated material and related data. The framework thus enables secure sharing of biomaterial within open and closed research communities, while flexibly integrating related clinical and omics data. Although the development of the framework is mainly driven by user scenarios from the cancer domain, in this case, acute lymphoblastic leukaemia and Wilms tumour, it can be extended to further disease entities.
Resumo:
In recent years, different subphenotypes of obesity have been described, including metabolically healthy obesity (MHO), in which a proportion of obese individuals, despite excess body fat, remain free of metabolic abnormalities and increased cardiometabolic risk. In the absence of a universally accepted set of criteria to classify MHO, the reported prevalence estimates vary widely. Our understanding of the determinants and stability of MHO over time and the associated cardiometabolic and mortality risks is improving, but many questions remain. For example, whether MHO is truly benign is debatable, and whether risk stratification of obese individuals on the basis of their metabolic health status may offer new opportunities for more personalized approaches in diagnosis, intervention, and treatment of diabetes remains speculative. Furthermore, as most of the research to date has focused on MHO in adults, little is known about childhood MHO. In this review, we focus on the epidemiology, determinants, stability, and health implications of MHO across the life course.
Resumo:
Polymorbid patients, diverse diagnostic and therapeutic options, more complex hospital structures, financial incentives, benchmarking, as well as perceptional and societal changes put pressure on medical doctors, specifically if medical errors surface. This is particularly true for the emergency department setting, where patients face delayed or erroneous initial diagnostic or therapeutic measures and costly hospital stays due to sub-optimal triage. A "biomarker" is any laboratory tool with the potential better to detect and characterise diseases, to simplify complex clinical algorithms and to improve clinical problem solving in routine care. They must be embedded in clinical algorithms to complement and not replace basic medical skills. Unselected ordering of laboratory tests and shortcomings in test performance and interpretation contribute to diagnostic errors. Test results may be ambiguous with false positive or false negative results and generate unnecessary harm and costs. Laboratory tests should only be ordered, if results have clinical consequences. In studies, we must move beyond the observational reporting and meta-analysing of diagnostic accuracies for biomarkers. Instead, specific cut-off ranges should be proposed and intervention studies conducted to prove outcome relevant impacts on patient care. The focus of this review is to exemplify the appropriate use of selected laboratory tests in the emergency setting for which randomised-controlled intervention studies have proven clinical benefit. Herein, we focus on initial patient triage and allocation of treatment opportunities in patients with cardiorespiratory diseases in the emergency department. The following five biomarkers will be discussed: proadrenomedullin for prognostic triage assessment and site-of-care decisions, cardiac troponin for acute myocardial infarction, natriuretic peptides for acute heart failure, D-dimers for venous thromboembolism, C-reactive protein as a marker of inflammation, and procalcitonin for antibiotic stewardship in infections of the respiratory tract and sepsis. For these markers we provide an overview on physiopathology, historical evolution of evidence, strengths and limitations for a rational implementation into clinical algorithms. We critically discuss results from key intervention trials that led to their use in clinical routine and potential future indications. The rational for the use of all these biomarkers, first, tackle diagnostic ambiguity and consecutive defensive medicine, second, delayed and sub-optimal therapeutic decisions, and third, prognostic uncertainty with misguided triage and site-of-care decisions all contributing to the waste of our limited health care resources. A multifaceted approach for a more targeted management of medical patients from emergency admission to discharge including biomarkers, will translate into better resource use, shorter length of hospital stay, reduced overall costs, improved patients satisfaction and outcomes in terms of mortality and re-hospitalisation. Hopefully, the concepts outlined in this review will help the reader to improve their diagnostic skills and become more parsimonious laboratory test requesters.
Resumo:
Antecedentes Europa vive una situación insostenible. Desde el 2008 se han reducido los recursos de los gobiernos a raíz de la crisis económica. El continente Europeo envejece con ritmo constante al punto que se prevé que en 2050 habrá sólo dos trabajadores por jubilado [54]. A esta situación se le añade el aumento de la incidencia de las enfermedades crónicas, relacionadas con el envejecimiento, cuyo coste puede alcanzar el 7% del PIB de un país [51]. Es necesario un cambio de paradigma. Una nueva manera de cuidar de la salud de las personas: sustentable, eficaz y preventiva más que curativa. Algunos estudios abogan por el cuidado personalizado de la salud (pHealth). En este modelo las prácticas médicas son adaptadas e individualizadas al paciente, desde la detección de los factores de riesgo hasta la personalización de los tratamientos basada en la respuesta del individuo [81]. El cuidado personalizado de la salud está asociado a menudo al uso de las tecnologías de la información y comunicación (TICs) que, con su desarrollo exponencial, ofrecen oportunidades interesantes para la mejora de la salud. El cambio de paradigma hacia el pHealth está lentamente ocurriendo, tanto en el ámbito de la investigación como en la industria, pero todavía no de manera significativa. Existen todavía muchas barreras relacionadas a la economía, a la política y la cultura. También existen barreras puramente tecnológicas, como la falta de sistemas de información interoperables [199]. A pesar de que los aspectos de interoperabilidad están evolucionando, todavía hace falta un diseño de referencia especialmente direccionado a la implementación y el despliegue en gran escala de sistemas basados en pHealth. La presente Tesis representa un intento de organizar la disciplina de la aplicación de las TICs al cuidado personalizado de la salud en un modelo de referencia, que permita la creación de plataformas de desarrollo de software para simplificar tareas comunes de desarrollo en este dominio. Preguntas de investigación RQ1 >Es posible definir un modelo, basado en técnicas de ingeniería del software, que represente el dominio del cuidado personalizado de la salud de una forma abstracta y representativa? RQ2 >Es posible construir una plataforma de desarrollo basada en este modelo? RQ3 >Esta plataforma ayuda a los desarrolladores a crear sistemas pHealth complejos e integrados? Métodos Para la descripción del modelo se adoptó el estándar ISO/IEC/IEEE 42010por ser lo suficientemente general y abstracto para el amplio enfoque de esta tesis [25]. El modelo está definido en varias partes: un modelo conceptual, expresado a través de mapas conceptuales que representan las partes interesadas (stakeholders), los artefactos y la información compartida; y escenarios y casos de uso para la descripción de sus funcionalidades. El modelo fue desarrollado de acuerdo a la información obtenida del análisis de la literatura, incluyendo 7 informes industriales y científicos, 9 estándares, 10 artículos en conferencias, 37 artículos en revistas, 25 páginas web y 5 libros. Basándose en el modelo se definieron los requisitos para la creación de la plataforma de desarrollo, enriquecidos por otros requisitos recolectados a través de una encuesta realizada a 11 ingenieros con experiencia en la rama. Para el desarrollo de la plataforma, se adoptó la metodología de integración continua [74] que permitió ejecutar tests automáticos en un servidor y también desplegar aplicaciones en una página web. En cuanto a la metodología utilizada para la validación se adoptó un marco para la formulación de teorías en la ingeniería del software [181]. Esto requiere el desarrollo de modelos y proposiciones que han de ser validados dentro de un ámbito de investigación definido, y que sirvan para guiar al investigador en la búsqueda de la evidencia necesaria para justificarla. La validación del modelo fue desarrollada mediante una encuesta online en tres rondas con un número creciente de invitados. El cuestionario fue enviado a 134 contactos y distribuido en algunos canales públicos como listas de correo y redes sociales. El objetivo era evaluar la legibilidad del modelo, su nivel de cobertura del dominio y su potencial utilidad en el diseño de sistemas derivados. El cuestionario incluía preguntas cuantitativas de tipo Likert y campos para recolección de comentarios. La plataforma de desarrollo fue validada en dos etapas. En la primera etapa se utilizó la plataforma en un experimento a pequeña escala, que consistió en una sesión de entrenamiento de 12 horas en la que 4 desarrolladores tuvieron que desarrollar algunos casos de uso y reunirse en un grupo focal para discutir su uso. La segunda etapa se realizó durante los tests de un proyecto en gran escala llamado HeartCycle [160]. En este proyecto un equipo de diseñadores y programadores desarrollaron tres aplicaciones en el campo de las enfermedades cardio-vasculares. Una de estas aplicaciones fue testeada en un ensayo clínico con pacientes reales. Al analizar el proyecto, el equipo de desarrollo se reunió en un grupo focal para identificar las ventajas y desventajas de la plataforma y su utilidad. Resultados Por lo que concierne el modelo que describe el dominio del pHealth, la parte conceptual incluye una descripción de los roles principales y las preocupaciones de los participantes, un modelo de los artefactos TIC que se usan comúnmente y un modelo para representar los datos típicos que son necesarios formalizar e intercambiar entre sistemas basados en pHealth. El modelo funcional incluye un conjunto de 18 escenarios, repartidos en: punto de vista de la persona asistida, punto de vista del cuidador, punto de vista del desarrollador, punto de vista de los proveedores de tecnologías y punto de vista de las autoridades; y un conjunto de 52 casos de uso repartidos en 6 categorías: actividades de la persona asistida, reacciones del sistema, actividades del cuidador, \engagement" del usuario, actividades del desarrollador y actividades de despliegue. Como resultado del cuestionario de validación del modelo, un total de 65 personas revisó el modelo proporcionando su nivel de acuerdo con las dimensiones evaluadas y un total de 248 comentarios sobre cómo mejorar el modelo. Los conocimientos de los participantes variaban desde la ingeniería del software (70%) hasta las especialidades médicas (15%), con declarado interés en eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), medicina personalizada (5%), sistemas basados en pHealth (15%), informática médica (10%) e ingeniería biomédica (8%) con una media de 7.25_4.99 años de experiencia en estas áreas. Los resultados de la encuesta muestran que los expertos contactados consideran el modelo fácil de leer (media de 1.89_0.79 siendo 1 el valor más favorable y 5 el peor), suficientemente abstracto (1.99_0.88) y formal (2.13_0.77), con una cobertura suficiente del dominio (2.26_0.95), útil para describir el dominio (2.02_0.7) y para generar sistemas más específicos (2_0.75). Los expertos también reportan un interés parcial en utilizar el modelo en su trabajo (2.48_0.91). Gracias a sus comentarios, el modelo fue mejorado y enriquecido con conceptos que faltaban, aunque no se pudo demonstrar su mejora en las dimensiones evaluadas, dada la composición diferente de personas en las tres rondas de evaluación. Desde el modelo, se generó una plataforma de desarrollo llamada \pHealth Patient Platform (pHPP)". La plataforma desarrollada incluye librerías, herramientas de programación y desarrollo, un tutorial y una aplicación de ejemplo. Se definieron cuatro módulos principales de la arquitectura: el Data Collection Engine, que permite abstraer las fuentes de datos como sensores o servicios externos, mapeando los datos a bases de datos u ontologías, y permitiendo interacción basada en eventos; el GUI Engine, que abstrae la interfaz de usuario en un modelo de interacción basado en mensajes; y el Rule Engine, que proporciona a los desarrolladores un medio simple para programar la lógica de la aplicación en forma de reglas \if-then". Después de que la plataforma pHPP fue utilizada durante 5 años en el proyecto HeartCycle, 5 desarrolladores fueron reunidos en un grupo de discusión para analizar y evaluar la plataforma. De estas evaluaciones se concluye que la plataforma fue diseñada para encajar las necesidades de los ingenieros que trabajan en la rama, permitiendo la separación de problemas entre las distintas especialidades, y simplificando algunas tareas de desarrollo como el manejo de datos y la interacción asíncrona. A pesar de ello, se encontraron algunos defectos a causa de la inmadurez de algunas tecnologías empleadas, y la ausencia de algunas herramientas específicas para el dominio como el procesado de datos o algunos protocolos de comunicación relacionados con la salud. Dentro del proyecto HeartCycle la plataforma fue utilizada para el desarrollo de la aplicación \Guided Exercise", un sistema TIC para la rehabilitación de pacientes que han sufrido un infarto del miocardio. El sistema fue testeado en un ensayo clínico randomizado en el cual a 55 pacientes se les dio el sistema para su uso por 21 semanas. De los resultados técnicos del ensayo se puede concluir que, a pesar de algunos errores menores prontamente corregidos durante el estudio, la plataforma es estable y fiable. Conclusiones La investigación llevada a cabo en esta Tesis y los resultados obtenidos proporcionan las respuestas a las tres preguntas de investigación que motivaron este trabajo: RQ1 Se ha desarrollado un modelo para representar el dominio de los sistemas personalizados de salud. La evaluación hecha por los expertos de la rama concluye que el modelo representa el dominio con precisión y con un balance apropiado entre abstracción y detalle. RQ2 Se ha desarrollado, con éxito, una plataforma de desarrollo basada en el modelo. RQ3 Se ha demostrado que la plataforma es capaz de ayudar a los desarrolladores en la creación de software pHealth complejos. Las ventajas de la plataforma han sido demostradas en el ámbito de un proyecto de gran escala, aunque el enfoque genérico adoptado indica que la plataforma podría ofrecer beneficios también en otros contextos. Los resultados de estas evaluaciones ofrecen indicios de que, ambos, el modelo y la plataforma serán buenos candidatos para poderse convertir en una referencia para futuros desarrollos de sistemas pHealth. ABSTRACT Background Europe is living in an unsustainable situation. The economic crisis has been reducing governments' economic resources since 2008 and threatening social and health systems, while the proportion of older people in the European population continues to increase so that it is foreseen that in 2050 there will be only two workers per retiree [54]. To this situation it should be added the rise, strongly related to age, of chronic diseases the burden of which has been estimated to be up to the 7% of a country's gross domestic product [51]. There is a need for a paradigm shift, the need for a new way of caring for people's health, shifting the focus from curing conditions that have arisen to a sustainable and effective approach with the emphasis on prevention. Some advocate the adoption of personalised health care (pHealth), a model where medical practices are tailored to the patient's unique life, from the detection of risk factors to the customization of treatments based on each individual's response [81]. Personalised health is often associated to the use of Information and Communications Technology (ICT), that, with its exponential development, offers interesting opportunities for improving healthcare. The shift towards pHealth is slowly taking place, both in research and in industry, but the change is not significant yet. Many barriers still exist related to economy, politics and culture, while others are purely technological, like the lack of interoperable information systems [199]. Though interoperability aspects are evolving, there is still the need of a reference design, especially tackling implementation and large scale deployment of pHealth systems. This thesis contributes to organizing the subject of ICT systems for personalised health into a reference model that allows for the creation of software development platforms to ease common development issues in the domain. Research questions RQ1 Is it possible to define a model, based on software engineering techniques, for representing the personalised health domain in an abstract and representative way? RQ2 Is it possible to build a development platform based on this model? RQ3 Does the development platform help developers create complex integrated pHealth systems? Methods As method for describing the model, the ISO/IEC/IEEE 42010 framework [25] is adopted for its generality and high level of abstraction. The model is specified in different parts: a conceptual model, which makes use of concept maps, for representing stakeholders, artefacts and shared information, and in scenarios and use cases for the representation of the functionalities of pHealth systems. The model was derived from literature analysis, including 7 industrial and scientific reports, 9 electronic standards, 10 conference proceedings papers, 37 journal papers, 25 websites and 5 books. Based on the reference model, requirements were drawn for building the development platform enriched with a set of requirements gathered in a survey run among 11 experienced engineers. For developing the platform, the continuous integration methodology [74] was adopted which allowed to perform automatic tests on a server and also to deploy packaged releases on a web site. As a validation methodology, a theory building framework for SW engineering was adopted from [181]. The framework, chosen as a guide to find evidence for justifying the research questions, imposed the creation of theories based on models and propositions to be validated within a scope. The validation of the model was conducted as an on-line survey in three validation rounds, encompassing a growing number of participants. The survey was submitted to 134 experts of the field and on some public channels like relevant mailing lists and social networks. Its objective was to assess the model's readability, its level of coverage of the domain and its potential usefulness in the design of actual, derived systems. The questionnaires included quantitative Likert scale questions and free text inputs for comments. The development platform was validated in two scopes. As a small-scale experiment, the platform was used in a 12 hours training session where 4 developers had to perform an exercise consisting in developing a set of typical pHealth use cases At the end of the session, a focus group was held to identify benefits and drawbacks of the platform. The second validation was held as a test-case study in a large scale research project called HeartCycle the aim of which was to develop a closed-loop disease management system for heart failure and coronary heart disease patients [160]. During this project three applications were developed by a team of programmers and designers. One of these applications was tested in a clinical trial with actual patients. At the end of the project, the team was interviewed in a focus group to assess the role the platform had within the project. Results For what regards the model that describes the pHealth domain, its conceptual part includes a description of the main roles and concerns of pHealth stakeholders, a model of the ICT artefacts that are commonly adopted and a model representing the typical data that need to be formalized among pHealth systems. The functional model includes a set of 18 scenarios, divided into assisted person's view, caregiver's view, developer's view, technology and services providers' view and authority's view, and a set of 52 Use Cases grouped in 6 categories: assisted person's activities, system reactions, caregiver's activities, user engagement, developer's activities and deployer's activities. For what concerns the validation of the model, a total of 65 people participated in the online survey providing their level of agreement in all the assessed dimensions and a total of 248 comments on how to improve and complete the model. Participants' background spanned from engineering and software development (70%) to medical specialities (15%), with declared interest in the fields of eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), Personalized Medicine (5%), Personal Health Systems (15%), Medical Informatics (10%) and Biomedical Engineering (8%) with an average of 7.25_4.99 years of experience in these fields. From the analysis of the answers it is possible to observe that the contacted experts considered the model easily readable (average of 1.89_0.79 being 1 the most favourable scoring and 5 the worst), sufficiently abstract (1.99_0.88) and formal (2.13_0.77) for its purpose, with a sufficient coverage of the domain (2.26_0.95), useful for describing the domain (2.02_0.7) and for generating more specific systems (2_0.75) and they reported a partial interest in using the model in their job (2.48_0.91). Thanks to their comments, the model was improved and enriched with concepts that were missing at the beginning, nonetheless it was not possible to prove an improvement among the iterations, due to the diversity of the participants in the three rounds. From the model, a development platform for the pHealth domain was generated called pHealth Patient Platform (pHPP). The platform includes a set of libraries, programming and deployment tools, a tutorial and a sample application. The main four modules of the architecture are: the Data Collection Engine, which allows abstracting sources of information like sensors or external services, mapping data to databases and ontologies, and allowing event-based interaction and filtering, the GUI Engine, which abstracts the user interface in a message-like interaction model, the Workow Engine, which allows programming the application's user interaction ows with graphical workows, and the Rule Engine, which gives developers a simple means for programming the application's logic in the form of \if-then" rules. After the 5 years experience of HeartCycle, partially programmed with pHPP, 5 developers were joined in a focus group to discuss the advantages and drawbacks of the platform. The view that emerged from the training course and the focus group was that the platform is well-suited to the needs of the engineers working in the field, it allowed the separation of concerns among the different specialities and it simplified some common development tasks like data management and asynchronous interaction. Nevertheless, some deficiencies were pointed out in terms of a lack of maturity of some technological choices, and for the absence of some domain-specific tools, e.g. for data processing or for health-related communication protocols. Within HeartCycle, the platform was used to develop part of the Guided Exercise system, a composition of ICT tools for the physical rehabilitation of patients who suffered from myocardial infarction. The system developed using the platform was tested in a randomized controlled clinical trial, in which 55 patients used the system for 21 weeks. The technical results of this trial showed that the system was stable and reliable. Some minor bugs were detected, but these were promptly corrected using the platform. This shows that the platform, as well as facilitating the development task, can be successfully used to produce reliable software. Conclusions The research work carried out in developing this thesis provides responses to the three three research questions that were the motivation for the work. RQ1 A model was developed representing the domain of personalised health systems, and the assessment of experts in the field was that it represents the domain accurately, with an appropriate balance between abstraction and detail. RQ2 A development platform based on the model was successfully developed. RQ3 The platform has been shown to assist developers create complex pHealth software. This was demonstrated within the scope of one large-scale project, but the generic approach adopted provides indications that it would offer benefits more widely. The results of these evaluations provide indications that both the model and the platform are good candidates for being a reference for future pHealth developments.
Resumo:
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.