900 resultados para particulate-reinforced Al composites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文针对发展新一代步兵战车复合材料履带板所面临的关键问题,结合其实际受载特点,设计制备了冲击疲劳实验加载装置,并着重从实验设计及机理分析上进行细致深入的探索,揭示了Al_2O_3/LC_4复合材料冲击疲劳破坏的微观过程和机理。首先分别对SiC_P/LC_4、Al_2O_(3P)/LC_4 及基体 LC_4 进行了显微组织的观察与定量分析,并对其拉伸、三点弯曲破坏过程进行了在位观察,结合其断裂形貌的观察与分析,揭示出颗粒增强铝基复合材料断裂破坏的根本原因是颗粒的聚集及脆性相在晶界的严重偏聚。针对这一结论,给材料制备单位提出工艺改进意见。对工艺改进后制备的复合材料进行常规力学性能的测试,结果表明,其拉伸性能明显优于改进前制备的相应材料。为了进行冲击疲劳的实验研究,在分析步兵战车履带板实际受载特点的基础上,自行设计制备了冲击疲劳实验的加载装置。主要包括主体框架和测量系统,前者与小型振动系统配合使用可以实现冲击能量为 0.3J、冲击频率为 1Hz、冲击速度为 0.6m/s 的多次冲击实验;后者可以准确记录下任意时刻的冲击载荷波形及冲击疲劳载荷的循环数。为了考察颗粒与加载速率对复合材料疲劳机理的影响,实验研究了 Al_2O_3/LC_4 复合材料和 LC_4 纯基体材料在冲击疲劳和常规疲劳过程中裂纹的扩展过程及扩展速率。综合结果发现:与LC_4纯基体材料相比,Al_2O_3/LC_4复合材料疲劳裂纹扩展得更为迅速。复合材料中,由于颗粒的加入,两种疲劳方式下袭纹都发生严重偏转;裂纹经过颗粒时,多数是绕过,少数是切过颗粒;冲击疲劳裂纹扩展速率明显高于常规疲劳裂纹扩展速率。纯基体材料中,两种加载方式下,裂纹基本都以穿晶的方式扩展,裂纹常常表现为小锯齿状;冲击疲劳裂纹尖端的塑性变形程度比常规疲劳更大;冲击疲劳裂纹比常规疲劳裂纹更曲折,表现出多尺度的锯齿状(Zig-Zag)特征;冲击疲劳裂纹扩展速率高于常规疲劳的裂纹扩展速率。在基本实验的基础上,进一步对断口及裂纹扩展途径进行了微观观察和定量分析,最后综合全文的实验和统计结果,讨论了颗粒增强铝基复合材料的冲击疲劳机理。复合材料疲劳裂纹扩展速率的提高主要与裂纹的偏转有关,裂纹更倾向于沿着颗粒与基体的界面扩展;两种材料的疲劳裂纹扩展速率均随加载速率的增加而增加,呈现加载速率的反作用。加载方式的改变,一方面,由于冲击情况下载荷持续时间降低,使裂纹扩展速率降低;另一方面,加载速率的提高使得断裂韧性值降低,材料变脆,裂纹扩展速率升高。这两个方面相互影响,相互竞争,决定实际的裂纹扩展速率。两种材料中,不同加载速率下的疲劳裂纹扩展的微观机制基本一致,没有明显的本质区别。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 mu s, intensity 15 or 70 kW/cm(2), and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress fields and failure mechanisms have been investigated in composites with particles either surface treated or untreated under uniaxial tension. Previous experimental observation of failure mechanisms in a composite with untreated particles showed that tensile cracks occurred mostly at the polar region of the particle and grew into interfacial debonding. In a composite with surface-treated particles, however, shear yielding and shear cracking proceeded along the interphase-matrix interface at the polar area of the matrix and thus may improve the mechanical behaviour of the material. The finite element calculations showed that octahedral shear stress at the polar and longitudinal areas of the particle treated by coupling agents is much larger than that of materials with untreated particles, and the shear stress distribution around the interface is sensitive to the interphase property. The results suggest that a th ree-phase model can describe the composites with surface-treated fillers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatigue behaviour in SiC-particulate-reinforced aluminium alloy composites has been briefly reviewed. The improved fatigue life reported in stress-controlled test results from the higher stiffness of the composites; therefore it is generally inferior to monolithic alloys at a constant strain level. The role of SiC particulate reinforcement has been examined for fatigue crack initiation, short-crack growth and long-crack growth. Crack initiation is observed to occur at matrix-SiC interface in cast composites and either at or near the matrix-SiC interface or at cracked SiC particles in powder metallurgy processed composites depending on particle size and morphology. The da/dN vs ΔK relationship in the composites is characterized by crack growth rates existing within a narrow range of ΔK and this is because of the lower fracture toughness and relatively high threshold values in composites compared with those in monolithic alloys. An enhanced Paris region slope attributed to the monotonic fracture contribution are reported and the extent of this contribution is found to depend on particle size. The effects of the aging condition on crack growth rates and particle size dependence of threshold values are also treated in this paper. © 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined. The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dry sliding wear behavior of die-cast ADC12 aluminum alloy composites reinforced with short alumina fibers were investigated by using a pin-on-disk wear tester. The Al2O3 fibers were 4 mu m in diameter and were present in volume fractions (T-f)ranging from 0.03 to 0.26, The length of the fiber varied from 40 to 200 mu m. Disks of aluminum-alumina composites were rubbed against a pin of nitrided stainless steel SUS440B with a load of 10 N at a sliding velocity of 0.1 m/s. The unreinforced ADC 12 aluminum alloy and their composites containing low volume fractions of alumina (V-f approximate to 0.05) showed a sliding-distance-dependent transition from severe to mild wear. However, composites containing high volume fractions of alumina ( V-f > 0.05) exhibited only mild wear for all sliding distances. The duration of occurrence of the severe wear regime and the wear rate both decrease with increasing volume fraction. In MMCs the wear rate in the mild wear regime decreases with increase in volume fraction: reaching a minimum value at V-f = 0.09 Beyond V-f = 0.09 the wear rate increasesmarginally. On the other hand, the wear rate of the counterface (steel pin) was found to increase moderately with increase in V-f. From the analysis of wear data and detailed examination of (a) worn surfaces, (b) their cross-sections and (c) wear debris, two modes of wear mechanisms have been identified to be operative, in these materials and these are: (i) adhesive wear in the case of unreinforced matrix material and in MMCs with low Vf and (ii) abrasive wear in the case of MMCs with high V-f. (C) 2000 Elsevier Science Ltd. All rights reserved.