36 resultados para particleboard


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the physical and mechanical properties of particleboard made with pruning wastes from Ipê (Tabebuia serratifolia) and Chapéu-de-Sol (Terminalia catappa) trees. Particleboards were prepared with both wood species, using all the material produced by grinding the pruning wastes. The particleboards had dimensions of 45×45 cm, a thickness of approximately 11.5 mm and an average density of 664 kg/m3. A urea-formaldehyde adhesive was used in the proportion of 12% of the dry particle mass. The particleboards were pressed at a temperature of 130 C for 10 mins. The physical and mechanical properties analyzed were density, moisture content, thickness swelling, percentage of lignin and cellulose, modulus of resilience, modulus of elasticity and tensile strength parallel to the grain, accordingly to the standards NBR 14810 and CS 236-66 (1968). The particleboards were considered to be of medium density. The particle size significantly affected the static bending strength and tensile strength parallel to the grain. Ipê presented better results, demonstrating a potential for the production and use of particleboard made from this species. © The Author(s) 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate physical performance of particleboards produced with waste from sawmills, containing different wood species, and two adhesives: urea-formaldehyde (UF) based resin and castor-oil (PU) based bi-component polyurethane resin. Panels were produced with nominal density 0.8gcm(-3); pressing temperature 110 degrees C; pressing time 10 min; specific pressure 5 MPa. Water absorption (2 and 24h); thickness swelling (2 and 24h); density; and moisture content were investigated. Results confirmed that the produced panels presented compatible physical properties in comparison with other researches referred in literature, proving the feasibility of inputs employed. Panels produced PU showed better performance than those produced with UF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of the addition of bamboo laminas of the species Dendrocalamus giganteus to three-layer medium density particleboard (MDP). These laminas were glued onto both the top and the bottom of each panel. With the manufactured panels laminated with bamboo, mechanical tests based on the Brazilian Standard ABNT NBR 14810 were carried out to determine the modulus of rupture (MOR) in static bending and the tensile strength parallel-to-surface. These mechanical tests were realized in particleboards of eucalyptus and in reinforced particleboard, both produced in the laboratory. The modulus of rupture and tensile strength parallel-to-surface of the laminated MDP had values close to those that have been reported. The reinforcements increased the values of these studied properties. Nevertheless, this fact indicated the possibility to produce a stronger MDP using bamboo lamina as surface layers. These results show the possibility of using coatedbamboo MDP for utilization in large spans, for example, in flooring for mezzanines with finish on both sides, and for robust furniture as bookshelves, beds, tables, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of proper disposal of solid waste generated in different industrial processes is one of worldwide environmental concerns nowadays. Thus, this study aimed to establish a new alternative for the disposal of two agro-industrial residues employing them to produce particleboard for different purposes in building construction. The focus was given to the reuse of the sugarcane bagasse (SB) originated during the processing of Saccharum officinarum for sugar and ethanol production, and bamboo stem leaves of Dendrocalamus giganteus(BB). For this, six particleboards were produced in the following compositions: with 100% SB, 75% SB + 25% BB, 50% SB+50% BB, 40% SB +60 BB, 25% SB+ 75% BB and 100% BB in the total mass of the composites. The particleboards physical characterization followed Brazilian Standard ABNT NBR 14810-3 to density, moisture content and water absorption. Results showed these raw materials are compatible to particleboard production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to determine physical properties of particleboard made of sawmill waste, as a mix of several wood species, and two adhesives: urea-formaldehyde, usually employed in industry (even with drawbacks or formaldehyde emission during pressing) and FASTBOND®, water based resin, still poorly referenced in literature. Sixteen panels have been produced, in four experimental conditions, defined by using two adhesives and a 12 mm thick limiter (or not). Variance analysis was adopted to evaluate influence of experimental conditions on physical properties of produced panels, manufactured in nominal dimensions 350x350mm; 10% resin related to particles mass (at 5% moisture); 3.5 MPa compaction pressure, temperature 130°C, in a 10 min cycle. Tests to determine density, moisture content, swelling and water absorption were carried out based on normative parameters of ABNT NBR 14810:2006. Results have been satisfactory to panels produced with urea-formaldehyde but those manufactured with polychloroprene based resin (FASTBOND®) not meet regulatory requirements. Best results have been obtained without limiter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, particleboards manufactured with Oceanic Posidonia waste and bonded with cement are investigated. The particleboards are made with 3/1.5/0.5 parts of cement per part of Posidonia waste. The physical properties of bulk density, swelling, surface absorption, and dimensional changes due to relative humidity as well as the mechanical properties of modulus of elasticity, bending strength, surface soundness, perpendicular tensile strength and impact resistance are studied. In terms of the above properties, the best results were obtained for particleboards with high cement content and when the waste “leaves” are treated (crushed) before board fabrication, due to internal changes to the board structure under these conditions. Based on the results of fire tests, the particleboard is non-flammable without any fire-resistant treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research project aims at developing new applications for CNSL in the polymer field. Cashew nut shell liquid (CNSL) is a cheap agro-byproduct and renewable resource which consists mainly of substituted phenols. By using CNSL in place of phenol, phenol derived from petrochemicals can be conserved and a cheap agro-byproduct utilized.In this study CNSL based resin is prepared by condensing a mixture of phenol and CNSL with hexamethylenetetramine and the effect of P: F ratio and CNSL: P ratio on the properties of synthesized resin is studied. The adhesive properties of CNSL based resin in combination with neoprene rubber are investigated. The effect of varying the stoichiometric ratios between total phenol and formaldehyde and CNSL and phenol of the resin, resin content, choice and extent of fillers and adhesion promoters in the adhesive formulation are studied. The effect of resin on the ageing properties of various elastomers is also studied by following changes in tensile strength, elongation at break, modulus, tear strength, swelling index and acetone soluble matter. Crude CNSL and resins with different P: F ratios and CNSL: P ratios are incorporated into elastomers. Lastly, utility of CNSL based resin as binder for making particleboard is investigated.The results show that CNSL based resin is an effective ingredient in adhesives for bonding aluminium to aluminium. The resin used for adhesive fonnulation gives the best performance at 45 to 55 phr resin and a total phenol: formaldehyde of l:2.9. The resin when added at a rate of l5 phr improves ageing characteristics of elastomers with respect to mechanical properties. The reaction mixture of CNSL and hexa and the resin resulting from the condensation of CN SL, phenol and hexa can be used as effective binders for moulding particleboard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landfill waste has a negative impact on the environment and small and medium sized enterprises (SMEs) are believed to be significant contributors. There is little government or scholarly research, however, quantifying the collective volume of waste SMEs send to landfill. Where studies do exist they measure total volumes (landfill and recycling combined) and/or do not distinguish between specific waste streams (e.g. wood) and subcategories (e.g. dust). This paper contributes to knowledge by giving insight into the collective volume of waste of 404 SMEs, reconceptualising SME waste into subcategories and by measuring landfill volumes. It presents findings from these 404 Australian SMEs which found that, in descending order, cardboard, paper, plastic wrap, wood dust and particleboard were the subcategories these SMEs sent to landfill in the greatest volumes. It also argues that this reconceptualisation, and associated data collection protocols, have the potential to enable scholars and policy makers to determine the waste subcategories to which SMEs contribute most, formulate targeted interventions and research or evaluate environmental outcomes. © 2014 © 2014 Environment Institute of Australia and New Zealand Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is about the use of the coconut´s endocarp (nucifera linn) and the waste of derivatives of wood and furniture as raw material to technological use. In that sense, the lignocellulosic waste is used for manufacture of homogeneous wood sheet agglomerate (LHWS) and lignocellulosic load which take part of a polymeric composite with fiber glass E (GFRP-WC). In the manufacturing of the homogeneous wood sheet agglomerate (LHWS), it was used mamona´s resin as waste s agglutinating element. The plates were taken up in a hydraulic press engine, heated, with temperature control, where they were manufactured for different percentage of waste wood and coconuts nucífera linn. Physical tests were conducted to determine the absorption of water, density, damp grade (in two hours and twenty-four hours), swelling thickness (in two hours and twenty-four hours), and mechanical tests to evaluate the parallel tensile strength (internal stick) and bending and the static (steady) flexural. The physical test´s results indicate that the LHWS can be classified as bonded wood plate of high-density and with highly water resistant. In the mechanical tests it was possible to establish that LHWS presents different characteristics when submitted to uniaxial tensile and to the static (steady) flexural, since brittle and elasticity module had a variation according to the amount of dry endocarp used to manufacture each trace of LHWS. The GFRP-WC was industrially manufactured by a hand-lay-up process where the fiber glass E was used as reinforcement the lignocellulósic´s waste as load. The matrix was made with ortofitalic unsaturated polyester resin. Physical and mechanical tests were performed in presence of saturated humidity and dry. The results indicated good performance of the GFRP-WC, as traction as in flexion in three points. The presence of water influenced the modules obtained in the flexural and tensile but there were no significant alteration in the properties analyzed. As for the fracture, the analysis showed that the effects are more harmful in the presence of damp, under the action of loading tested, but despite this, the fracture was well defined starting in the external parts and spreading to the internal regions when one when it reaches the hybrid load

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho tem por objetivo o reaproveitamento de resíduos sólidos na preparação de painéis para uso na arquitetura. Para atingir as metas propostas, painéis foram preparados a partir de resíduos provenientes de embalagens cartonadas e plásticas, utilizando-se como elemento de reforço, resíduos lignocelulósicos (casca de amendoim e de arroz). A concentração e a natureza dos resíduos utilizados como matriz e como carga foram variadas gerando doze condições experimentais diferentes. As propriedades avaliadas dos painéis foram o módulo de ruptura, módulo de elasticidade, tração perpendicular à superfície, inchamento em espessura, absorção de água e densidade. Todos os ensaios foram realizados segundo as normas ASTM D1037 e EN 317, referente à chapa de partículas. Os resultados foram analisados segundo a norma ANSI A208.1 que especifica as propriedades de desempenho requeridas para as chapas de partículas. Os painéis foram classificados como de baixa densidade, podendo ser utilizados como forros, divisórias, revestimento decorativos e demais aplicações que requerem as mesmas propriedades físicas e mecânicas. Os painéis a base de embalagem plástica reforçados com casca de arroz apresentaram propriedades superiores do que os demais painéis produzidos. O elemento arquitetônico desenvolvido neste estudo representa um novo mercado potencial, podendo ser empregado no ambiente urbano e rural, atendendo ao conceito de produto ecoeficiente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aimed to test particleboard with leucena (Leucaena leucocephala) wood particles and polyurethane resin castor oil based. The response variables are: modulus of rupture (MOR), internal adhesion (AI), apparent density (dap) and wood moisture content (um). The experiments were developed based on the methodological procedures of the ABNT NBR 14810:2002 standard. The particleboards were manufactured by hot-pressing at 4MPa and 90°C, using timber particles with 5% of moisture content and 10% of monocomponent and bicomponent polyurethane resin. The higher moisture content was achieved when the monocomponent polyurethane resin was used. The bicomponent polyurethane resin provided a percent increase of 43.7% and 22.7% on the modulus of rupture and apparent density, respectively, when compared to the standard limit. The internal adhesion of the panels manufactured with monocomponent resin was 2.45 times higher than the standard limit. The confidence interval between means revealed that the internal adhesion and apparent density exhibited statistical equivalence. A good correlation between the internal adhesion and apparent density was found, for this reason it was possible to estimate the internal adhesion of the panels based on the apparent density data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a research on the environmental impacts of particleboards produced from wastes, based on a comparative Life Cycle Assessment study. The particleboards were manufactured in laboratorial scale from the following residues: sugarcane bagasse (Saccharum spp.) and pine wood shavings (Pinus elliottii). The study was developed following the methodological guidelines of ISO 14040. The functional unit adopted was the m2 of the particleboards produced and the impacts were evaluated by the Environmental Development of Industrial Products method. The results indicated that pine particleboard present the highest environmental impact potential. Our findings suggested that the factors that mostly aggravated the environmental impacts were: the distance between the raw materials and the production site, and formaldehyde emissions (FE). The first is related to the combustion of fossil fuel during the acquisition of raw material, which achieved the values of 2185.94 g/m2 for consumption of non-renewable resources for pine particleboard and 893.53 g/m2 for bagasse particleboard. The second is related to the use of urea-formaldehyde resin, responsible for the FE into the air during production. The FE is accountable for the contamination of approximately 7,800,000.00 m3 of air per m2 of particleboard produced, and was the factor with the greatest impact in human toxicity potential. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG