915 resultados para parathion methyl
Resumo:
An immunoaffinity chromatographic (IAC) method for the selective extraction and concentration of 13 organophosphorus pesticides (OPs, including coumaphos, parathion, phoxim, quinalphos, dichlofenthion, triazophos, azinphos-ethyl, phosalone, isochlorthion, parathion-methyl, cyanophos, disulfoton, and phorate) prior to analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The IAC column was prepared by covalently immobilizing a monoclonal antibody with broad specificity for OPs on CNBr-activated Sephrose 4B. The column capacity ranged from 884 to 2641 ng/mL of gel. The optimum elution solvent was 0.01 M phosphate-buffered saline containing 80% methanol. The breakthrough volume of the IAC column was found to be 400 mL. Recoveries of OPs from spiked environmental samples by IAC cleanup and HPLC-MS/MS analysis ranged from 60.2 to 107.1%, with a relative standard deviation below 11.1%. The limit of quantitation for 13 OPs ranged from 0.01 to 0.13 ng/mL (ng/g). The application of IAC cleanup coupled to HPLC-MS/MS in real environmental samples demonstrated the potential of this method for the determination of OP residues in environmental samples at trace levels.
Resumo:
The influence of the sample matrix in the CC-electron-capture detection analysis of the pesticides dimethoate, diazinon, chlorothalonil.. parathion methyl and fenitrothion in fruits samples has been studied. Experiments have been carried out where the pesticide responses in standard solutions prepared in selected solvent were compared with their response when present in apple, mango, papaya, banana, pineapple and melon extracts. The presence of matrix effects (MEs) and their extent were shown to be simultaneously influenced by several factors (matrix concentration, matrix type, pesticide concentration, analytical range). Pronounced MEs were observed particularly for dimethoate and diazinon in all matrices tested; in lower concentrations, all pesticides presented significant ME. The other pesticides presented variable ME. Higher ME enhancement was detected at lower pesticide concentration levels of and/or at higher matrix concentration solutions. The ME detected for fenitrothion, in the analytical range evaluated, were dependent on matrix type. For each pesticide, solvent and matrix-matched calibrations were compared for all fruit samples, and it could be concluded that quantitation based on standard solutions prepared in blank matrix extract (matrix-matched calibration) should be used to compensate the MEs and to obtain more accurate results for the pesticides studied.
Resumo:
Testes de efeito adverso de agroquímicos sobre Iphiseiodes zuluagai Denmark & Muma (Acari: Phytoseiidae) foram conduzidos em laboratório, utilizando o método residual de contato com pulverização em superfície de vidro. Foram testados 42 produtos químicos, a maioria utilizada na citricultura brasileira. A mortalidade e o efeito dos produtos na reprodução do ácaro foram avaliados diariamente durante oito dias. Os produtos foram classificados quanto ao efeito total causado ao ácaro (combinação da mortalidade e efeito na reprodução) em quatro classes de toxicidade propostas pela IOBC/WPRS. Os resultados mostraram que cerca de 26% dos produtos testados foram inócuos (captan, clofentezine, fenbutatin oxide, fosetyl, hexythiazox, hidróxido de cobre, naled, oxicloreto de cobre, óxido cuproso e tetradifon), 14% levemente nocivos (abamectin, chlorothalonil, sulfato de cobre, thiophanate-methyl (PM) e ziram), 7% moderadamente nocivos (enxofre, parathion-methyl e thiophanate-methyl (SC)) e 52% nocivos ao ácaro (acrinathrin, amitraz, azinphos-ethyl, azocyclotin, benomyl, bifenthrin, bromopropylate, carbaryl, carbosulfan, chlorfenapyr, cyhexatin, dicofol, fenpropathrin, fenpyroximate, mancozeb, óleo mineral e vegetal, phosmet, propargite, quinomethionate, triazophos, e vamidothion).
Resumo:
Two simple methods were developed to determine, 11 pesticides in coconut water, a natural isotonic drink rich in salts, sugars and vitamins consumed by the people and athletes. The first procedure involves solid-phase extraction using Sep-Pak Vac C-18 disposable cartridges with methanol for elution. Isocratic analysis was carried out by means of high-performance liquid chromatography with ultraviolet detection at 254 nm to analyse captan, chlorothalonil, carbendazim, lufenuron and diafenthiuron. The other procedure is based on liquid-liquid extraction with hexane-dichloromethane (1:1, v/v), followed by gas chromatographic analysis with effluent splitting to electron-capture detection for determination of endosulfan, captan, tetradifon and trichlorfon and thermionic specific detection for determination of malathion, parathion-methyl and monocrotophos. The methods were validated with fortified samples at different concentration levels (0.01-12.0 mg/kg). Average recoveries ranged from 75 to 104% with relative standard deviations between 1.4 and 11.5%. Each recovery analysis was repeated at least five times. Limits of detection ranged from 0.002 to 2.0 mg/kg. The analytical procedures were applied to 15 samples and no detectable amounts of the pesticides were found in any samples under the conditions described. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The decay rate of six insecticides (azinphos methyl, diazinon, dimethoate, methidathion, parathion methyl, and quinalphos) used to control Dacus oleae was studied. Degradation of pesticides showed pseudo-first-order kinetics with correlation coefficients ranging between -0.936 and -0.998 and half-lives between 4.3 days for dimethoate and 10.5 days for methidathion. Residues in olive oil were greater than on olives, with a maximum concentration factor of 7. Dimethoate was the only pesticide with lower residues in the oil than on the fruits. Olive washing affects pesticide residues ranging from no reduction to a 45% decrease. During 8 months of storage of the olive oil, diazinon, dimethoate, parathion methyl, and quinalphos did not show any remarkable difference, while methidathion and azinphos methyl showed a moderate decrease.
Resumo:
The fate of eight fungicides (benalaxyl, fenarimol, iprodione, metalaxyl, myclobutanil, procymidone, triadimefon, and vinclozolin) and five insecticides (dimethoate, fenthion, methidathion, parathion methyl, and quinalphos) in wine and its byproducts (cake and lees) during the production of distilled spirits was studied. Among the pesticides studied, only fenthion, quinalphos, and vinclozolin residues were present in the distilled spirits. During wine distillation, respectively 13% and 5% of the initial residues of fenthion and vinclozolin were transferred to the distilled spirit. Low percentages (2% for fenthion and 0.1% for vinclozolin) of these active ingredients (AI) also passed from the lees to the final-distilled spirit, when samples were fortified at 10.1 and 26.1 ppm for fenthion and vinclozolin, respectively. Quinalphos passed only from the lees to the final-distilled spirit in percentages lower than 1% when samples were fortified at the highest concentration (4.6 ppm).
Resumo:
Exposure to agrichemicals can have deleterious effects on fish, such as disruption of the hypothalamus-pituitary-inter-renal axis (HPI) that could impair the ability of fish to respond to stressors. In this study, fingerlings of the teleost jundiá (Rhamdia quelen) were used to investigate the effects of the commonly used agrichemicals on the fish response to stress. Five common agrichemicals were tested: the fungicide - tebuconazole, the insecticide - methyl-parathion, and the herbicides - atrazine, atrazine + simazine, and glyphosate. Control fishes were not exposed to agrichemicals and standard stressors. In treatments 2-4, the fishes were exposed to sub-lethal concentrations (16.6%, 33.3%, and 50% of the LC50) of each agrichemical for 96 h, and at the end of this period, were subjected to an acute stress-handling stimulus by chasing them with a pen net. In treatments 5-7 (16.6%, 33.3%, and 50% of the LC50), the fishes were exposed to the same concentrations of the agrichemicals without stress stimulus. Treatment 8 consisted of jundiás not exposed to agrichemicals, but was subjected to an acute stress-handling stimulus. Jundiás exposed to methyl-parathion, atrazine + simazine, and glyphosate presented a decreased capacity in exhibiting an adequate response to cope with stress and in maintaining the homeostasis, with cortisol level lower than that in the control fish (P < 0.01). In conclusion, the results of this study clearly demonstrate that the acute exposure to sub-lethal concentrations of methyl-parathion, atrazine + simazine, and glyphosate exert a deleterious effect on the cortisol response to an additional acute stressor in the jundiá fingerlings. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Methyl parathion hydrolase (MPH) is an enzyme that catalyzes the degradation of methyl parathion, generating a yellow product with specific absorption at 405 nm. The application of MPH as a new labeling enzyme was illustrated in this study. The key advantages of using MPH as a labeling enzyme are as follows: (1) unlike alkaline phosphatase (AP), horseradish peroxidase (HRP), and glucose oxidase (GOD), MPH is rarely found in animal cells, and it therefore produces less background noise; (2) its active form in solution is the monomer, with a molecular weight of 37 kDa; (3) its turnover number is 114.70 +/- 13.19 s(-1), which is sufficiently high to yield a significant signal for sensitive detection; and (4) its 3D structure is known and its C-terminal that is exposed to the surface can be easily subjected to the construction of genetic engineering monocloning antibody-enzyme fusion for enzyme-linked immunosorbent assay (ELISA). To demonstrate its utility, MPH was ligated to an single-chain variable fragment (scFv), known as A1E, against a white spot syndrome virus (WSSV) with the insertion of a [-(Gly-Ser)(5)-] linker peptide. The resulting fusion protein MPH-A1E possessed both the binding specificity of the scFv segment and the catalytic activity of the MPH segment. When MPH-A1E was used as an ELISA reagent, 25 ng purified WSSV was detected; this was similar to the detection sensitivity obtained using A1E scFv and the HRP/Anti-E Tag Conjugate protocol. The fusion protein also recognized the WSSV in 1 mu L hemolymph from an infected shrimp and differentiated it from a healthy shrimp.
Resumo:
This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A low-cost electrochemical method was developed for the determination of trace-level of methyl parathion (MP) based on the properties of graphite-modified basal plane pyrolytic graphite electrode (graphite-bppg). A combination of graphite-bppg with square-wave voltammetric (SWV) analysis resulted in an original, sensitive and selective electrochemical method for determination of MP pesticide in drinking water. The electrode was constructed and the electrochemical behavior of MP was studied. Immobilization is achieved via film modification from dispersing graphite powder in deionized water and through pipeting a small volume onto the electrode surface allowing the solvent to volatilize. The strong affinity of the graphite modifier for the phosphorous group of the MP allowed the deposition of a significant amount of MP in less than 60 seconds. The cyclic voltammetric results indicate that the graphite-bppg electrode can enhance sensitivity in current intensity towards the quasi-reversible redox peaks of the products of the cathodic reduction of the nitro group at negative potential (peak I = 0.077 V and peak II = –0.062 V) and that the cathodic irreversible peak (peak III = –0.586 V) in comparison with bare bppg electrode and is also adsorption controlled process. Under optimized conditions, the concentration range and detection limit for MP pesticide are respectively 79.0 to 263.3 mmol L-1 and 3.00 mmol L-1. The proposed method was successfully applied to MP determination in drinking water and the performance of this electrochemical sensor has been evaluated in terms of analytical figures of merit.