939 resultados para parameter driven model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new two-parameter integrable model with quantum superalgebra U-q[gl(3/1)] symmetry is proposed, which is an eight-state fermions model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. The model is solved and the Bethe ansatz equations are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane bioreactors (MBRs) are a combination of activated sludge bioreactors and membrane filtration, enabling high quality effluent with a small footprint. However, they can be beset by fouling, which causes an increase in transmembrane pressure (TMP). Modelling and simulation of changes in TMP could be useful to describe fouling through the identification of the most relevant operating conditions. Using experimental data from a MBR pilot plant operated for 462days, two different models were developed: a deterministic model using activated sludge model n°2d (ASM2d) for the biological component and a resistance in-series model for the filtration component as well as a data-driven model based on multivariable regressions. Once validated, these models were used to describe membrane fouling (as changes in TMP over time) under different operating conditions. The deterministic model performed better at higher temperatures (>20°C), constant operating conditions (DO set-point, membrane air-flow, pH and ORP), and high mixed liquor suspended solids (>6.9gL-1) and flux changes. At low pH (<7) or periods with higher pH changes, the data-driven model was more accurate. Changes in the DO set-point of the aerobic reactor that affected the TMP were also better described by the data-driven model. By combining the use of both models, a better description of fouling can be achieved under different operating conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An integrable eight-state supersymmetric U model is proposed, which is a fermion model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. It has a gl(3/1) supersymmetry and contains one symmetry-preserving free parameter. The model is solved and the Bethe ansatz equations are obtained. [S0163-1829(98)00616-X].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systemidentification, evolutionary automatic, data-driven model, fuzzy Takagi-Sugeno grammar, genotype interpretability, toxicity-prediction

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A frequency-dependent compact model for inductors in high ohmic substrates, which is based on an energy point-of-view, is developed. This approach enables the description of the most important coupling phenomena that take place inside the device. Magnetically induced losses are quite accurately calculated and coupling between electric and magnetic fields is given by means of a delay constant. The later coupling phenomenon provides a modified procedure for the computation of the fringing capacitance value, when the self-resonance frequency of the inductor is used as a fitting parameter. The model takes into account the width of every metal strip and the pitch between strips. This enables the description of optimized layout inductors. Data from experiments and electromagnetic simulators are presented to test the accuracy of the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les immunoglobulines intraveineuses (IVIg) constituent une préparation polyclonale d’IgG isolée et regroupée à partir du plasma sanguin de multiples donneurs. Initialement utilisé comme traitement de remplacement chez les patients souffrant d’immunodéficience primaire ou secondaire, les IVIg sont maintenant largement utilisées dans le traitement de plusieurs conditions auto-immunes, allergiques ou inflammatoires à une dose élevée, dite immunomodulatrice. Différents mécanismes d’action ont été postulés au fil des années pour expliquer l’effet thérapeutique des IVIg dans les maladies auto-immunes et inflammatoires. Entre autre, un nombre grandissant de données issues de modèles expérimentaux chez l’animal et l’humain suggère que les IVIg induisent l’expansion et augmentent l’action suppressive des cellules T régulatrices (Tregs), par un mécanisme qui demeure encore inconnu. Également, les patients atteints de maladies auto-immunes ou inflammatoires présentent souvent un nombre abaissé de Tregs par rapport aux individus sains. Ainsi, une meilleure compréhension des mécanismes par lesquels les IVIg modulent les cellules T régulatrices est requise afin de permettre un usage plus rationnel de ce produit sanguin en tant qu’alternative thérapeutique dans le traitement des maladies auto-immunes et inflammatoires. Par le biais d’un modèle expérimental d’allergie respiratoire induite par un allergène, nous avons démontré que les IVIg diminuaient significativement l’inflammation au niveau des voies aériennes ce, en association avec une différenciation des Tregs à partir des cellules T non régulatrices du tissu pulmonaire. Nous avons également démontré qu’au sein de notre modèle expérimental, l’effet anti-inflammatoire des IVIg était dépendant des cellules dendritiques CD11c+ (CDs) pulmonaires, puisque cet effet pouvait être complètement reproduit par le transfert adoptif de CDs provenant de souris préalablement traitées par les IVIg. À cet effet, il est déjà établi que les IVIg peuvent moduler l’activation et les propriétés des CDs pour favoriser la tolérance immunitaire et que ces cellules seraient cruciales pour l’induction périphérique des Tregs. C’est pourquoi, nous avons cherché à mieux comprendre comment les IVIg exercent leur effet sur ces cellules. Pour la première fois, nous avons démontré que la fraction d’IgG riche en acide sialique (SA-IVIg) (constituant 2-5% de l’ensemble des IgG des donneurs) interagit avec un récepteur dendritique inhibiteur de type lectine C (DCIR) et active une cascade de signalement intracellulaire initiée par la phosphorylation du motif ITIM qui est responsable des changements observés en faveur de la tolérance immunitaire auprès des cellules dendritiques et des Tregs. L’activité anti-inflammatoire de la composante SA-IVIg a déjà été décrite dans des études antérieures, mais encore une fois le mécanisme par lequel ce traitement modifie la fonction des CDs n’a pas été établi. Nous avons finalement démontré que le récepteur DCIR facilite l’internalisation des molécules d’IgG liées au récepteur et que cette étape est cruciale pour permettre l’induction périphérique des Tregs. En tant que produit sanguin, les IVIg constitue un traitement précieux qui existe en quantité limitée. La caractérisation des mécanismes d’action des IVIg permettra une meilleure utilisation de ce traitement dans un vaste éventail de pathologies auto-immunes et inflammatoires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configuration accounted for uncertainty in climate, planting date, optimization, temperature-induced changes in development rate and reproduction. It also accounts for lethal temperatures, which have been somewhat neglected to date. Using uncertainty decomposition, we found that fractional uncertainty due to temperature-driven processes in the crop model was on average larger than climate model uncertainty (0.56 versus 0.44), and that the crop model uncertainty is dominated by crop development. Simulations with the raw compared to the bias-corrected climate data did not agree on the impact on future wheat yield, nor its geographical distribution. However the method of bias-correction was not an important source of uncertainty. We conclude that bias-correction of climate model data and improved constraints on especially crop development are critical for robust impact predictions.