999 resultados para pancreas function
Resumo:
Um dos eventos adversos da zidovudina, um fármaco anti-retroviral, é o desenvolvimento de melanoníquia. Foram avaliados 19 pacientes adultos tratados com zidovudina evidenciando linhas ungueais, um efeito colateral incomum por vezes relatado. As funções hepática, renal, pancreática, bem como a função metabólica destes doentes também foram avaliados. Foram também obtidos marcadores imunológicos e a taxa de adesão ao tratamento.Os nossos resultados sugerem que a melanoníquia, como a macrocitose, podem estar associadas à utilização de terapia anti-retroviral.
Resumo:
Protein-calorie malnutrition produces glucose intolerance and reduced insulin release in response to glucose. Rats adapted to low- or high-protein diets show an increased resistance to the diabetogenic action of a single dose of streptozotocin or alloxan. To determine the effects of dietary protein level on pancreatic function, we measured serum glucose levels under basal conditions and during the oral glucose tolerance test (GTT) performed before and after a single dose of alloxan administered to rats fed a 25% or a 6% protein diet for a period of 8 weeks. The incidence of mild hyperglycemia (serum glucose > 250 mg/dl) was greater among the rats fed the 25% protein diet (81%) than among those fed the 6% protein diet (42%). During the GTT performed before alloxan administration the serum glucose levels of the rats fed the 6% protein diet were not found to be significantly different from those of rats fed the 25% protein diet. During the GTT performed after alloxan injection all rats showed intolerance to the substrate (serum glucose > 160 mg/dl 120 min after glucose administration) regardless of whether basal serum glucose was normal or high. In summary, alloxan was less effective in producing basal hyperglycemia in the rats fed the 6% protein diet than in those fed the 25% protein diet but caused glucose intolerance during the oral GTT in both groups. Thus, it seems that feeding a 6% protein diet to rats offers only partial protection against the toxic effects of alloxan.
Resumo:
It has been established that successful pancreas transplantation in Type 1 (insulin-dependent) diabetic patients results in normal but exaggerated phasic glucose-induced insulin secretion, normal intravenous glucose disappearance rates, improved glucose recovery from insulin-induced hypoglycaemia, improved glucagon secretion during insulin-induced hypoglycaemia, but no alterations in pancreatic polypeptide responses to hypoglycaemia. However, previous reports have not segregated the data in terms of the length of time following successful transplantation and very little prospective data collected over time in individual patients has been published. This article reports that in general there are no significant differences in the level of improvement when comparing responses as early as three months post-operatively up to as long as two years post-operatively when examining the data cross-sectionally in patients who have successfully maintained their allografts. Moreover, this remarkable constancy in pancreatic islet function is also seen in a smaller group of patients who have been examined prospectively at various intervals post-operatively. It is concluded that successful pancreas transplantation results in remarkable improvements in Alpha and Beta cell but not PP cell function that are maintained for at least one to two years.
Resumo:
Reports on the use of sirolimus (SRL) in pancreas transplantation are still limited. The aim of this study was to evaluate the outcome of SRL conversion in pancreas transplant patients. Among 247 patients undergoing simultaneous kidney-pancreas or solitary pancreas transplantation, 33 (13%) were converted to SRL. The reasons for conversion were calcineurin inhibitors (CNI) nephrotoxicity (n = 24; 73%), severe neurotoxicity owing to CNI (n = 1; 3%), severe and/or recurrent acute rejection episodes (n = 7; 21.%), gastrointestinal (GI) side effects of mycophenolate mofetil (MMF; n = 5; 15%), and hyperglycemia (n = 4; 12%). Before conversion, all patients were maintained on a CNI, MMF, and low-dose steroids. They were gradually converted to SRL associated with either CNI or MMF withdrawal. Sixty-three percent (n = 15) of patients who were converted owing to CNI nephrotoxicity, showed stable or improved renal function. At 12 months after conversion, serum creatinine levels were significantly decreased in this group (2.2 +/- 0.5 vs 1.6 +/- 0.3 mg/dL; P = .001) and C-peptide values increased (2.9 +/- 1.1.1 vs 3.1 +/- 1.3 nmol/L; P = .01.8). The only patient with leucoencephalopathy showed improved neurologic status after SRL conversion. All patients converted to SRL because of GI side effects of MMF showed improvements, and none of those converted because of hyperglycemia experienced improvement. There were no episodes of acute rejection after conversion. We concluded that conversion to SRL in pancreas transplantation should be considered an important alternative strategy, particularly for CNI nephrotoxicity and neurotoxicity, and in cases of severe diarrhea due to MMF.
Resumo:
In type 2 diabetes (DM2) there is progressive deterioration in beta-cell function and mass. It was found that islet function was about 50% of normal at the time of diagnosis and reduction in beta-cell mass of about 60% at necropsy (accelerated apoptosis). Among the interventions to preserve the beta-cells, those to lead to short-term improvement of beta-cell secretion are weight loss, metformin, sulfonylureas, and insulin. The long-term improvement was demonstrated with short-term intensive insulin therapy of newly diagnosed DM2, the use of antiapoptotic drugs such as glitazones, and the use of glucagon-like peptide-1 receptor agonists (GLP-1 mimetics), not inactivated by the enzyme dipeptidyl peptidase 4 and/or to inhibit that enzyme (GLP-1 enhancers). The incretin hormones are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas and overall maintenance of glucose homeostasis. From the two major incretins, GLP-1 and GIP (glucose-dependent insulinotropic polypeptide), only the first one or its mimetics or enhancers can be used for treatment. The GLP-1 mimetics exenatide and liraglutide as well as the DPP4 inhibitors (sitagliptin and vildagliptin) were approved for treatment of DM2.
Resumo:
OBJECTIVEEvaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis.RESEARCH DESIGN AND METHODSWe generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss.RESULTSAdult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions.CONCLUSIONSAn extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.
Resumo:
Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.
Resumo:
Summary : Control of pancreatic ß-cell mass and function by gluco-incretin hormones: Identification of novel regulatory mechanisms for the treatment of diabetes The ß-cells of islets of Langerhans secrete insulin to reduce hyperglycemia. The number of pancreatic islet ß-cells and their capacity to secrete insulin is modulated in normal physiological conditions to respond to the metabolic demand of the organism. A failure of the endocrine pancreas to maintain an adequate insulin secretory capacity due to a reduced ß-cell number and function underlies the pathogenesis of both type 1 and type 2 diabetes. The molecular mechanisms controlling the glucose competence of mature ß-cells, i.e., the magnitude of their insulin secretion response to glucose, ß-cell replication, their differentiation from precursor cells and protection against apoptosis are poorly understood. To investigate these mechanisms, we studied the effects on ß-cells of the gluco-incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) which are secreted by intestinal endocrine cells after food intake. Besides acutely potentiating glucose-stimulated insulin secretion, these hormones induce ß-cell differentiation from precursor cells, stimulate mature ß-cell replication, and protect them against apoptosis. Therefore, understanding the molecular basis for gluco-incretin action may lead to the uncovering of novel ß-cell regulatory events with potential application for the treatment or prevention of diabetes. Islets from mice with inactivation of both GIP and GLP-1 receptor genes (dK0) present a defect in glucose-induced insulin secretion and are more sensitive than control islets to cytokine-induced apoptosis. To search for regulatory genes, that may control both glucose competence and protection against apoptosis, we performed comparative transcriptomic analysis of islets from control and dK0 mice. We found a strong down-regulation of the IGF1 Rexpression in dK0 islets. We demonstrated in both a mouse insulin-secreting cell line and primary islets, that GLP-1 stimulated IGF-1R expression and signaling. Importantly, GLP-1induced IGF-1R-dependent Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism. We further showed that activation of IGF-1R signaling was dependent on the secretion of IGF-2 and IGF-2 expression was regulated by nutrients. Finally, we demonstrated that the IGF-Z/IGF-1R autocrine loop was required for GLP-1 i) to protect ß-cells against cytokine-induced apoptosis, ii) to enhance their glucose competence and iii) to increase ß-cell proliferation. Résumé : Contrôle de la masse des cellules ß pancréatiques et de leur fonction par les hormones glucoincrétines: Identification de nouveaux mécanismes régulateurs pour le traitement du diabète Les cellules ß des îlots de Langerhans sécrètent l'insuline pour diminuer l'hyperglycémie. Le nombre de cellules ß et leur capacité à sécréter l'insuline sont modulés dans les conditions physiologiques normales pour répondre à la demande métabolique de l'organisme. Un échec du pancréas endocrine à maintenir sa capacité sécrétoire d'insuline dû à une diminution du nombre et de la fonction des cellules ß conduit au diabète de type 1 et de type 2. Les mécanismes moléculaires contrôlant la compétence au glucose des cellules ß matures, tels que, l'augmentation de la sécrétion d'insuline en réponse au glucose, la réplication des cellules ß, leur différentiation à partir de cellules précurseurs et la protection contre l'apoptose sont encore peu connus. Afin d'examiner ces mécanismes, nous avons étudié les effets sur les cellules ß des hormones gluco-incrétines, glucose-dépendent insulinotropic polypeptide (G1P) et glucagon-like peptide-1 (GLP-1) qui sont sécrétées par les cellules endocrines de l'intestin après la prise alimentaire. En plus de potentialiser la sécrétion d'insuline induite par le glucose, ces hormones induisent la différentiation de cellules ß à partir de cellules précurseurs, stimulent leur prolifération et les protègent contre l'apoptose. Par conséquent, comprendre les mécanismes d'action des gluco-incrétines permettrait de découvrir de nouveaux processus régulant les cellules ß avec d'éventuelles applications dans le traitement ou la prévention du diabète. Les îlots de souris ayant une double inactivation des gènes pour les récepteurs du GIP et du GLP-1 (dK0) présentent un défaut de sécrétion d'insuline stimulée par le glucose et une sensibilité accrue à l'apoptose induite par les cytokines. Afin de déterminer les gènes régulés, qui pourraient contrôler à la fois la compétence au glucose et la protection contre l'apoptose, nous avons effectué une analyse comparative transcriptomique sur des îlots de souris contrôles et dKO. Nous avons constaté une forte diminution de l'expression d'IGF-1R dans les îlots dKO. Nous avons démontré, à la fois dans une lignée cellulaire murine sécrétant l'insuline et dans îlots primaires, que le GLP-1 stimulait l'expression d'IGF-1R et sa voie de signalisation. Par ailleurs, la phosphorylation d'Akt dépendante d'IGF1-R induite parle GLP-1 nécessite une sécrétion active, indiquant la présence d'un mécanisme d'activation autocrine. Nous avons ensuite montré que l'activation de la voie de signalisation d'IGF-1R était dépendante de la sécrétion d'IGF-2, dont l'expression est régulée par les nutriments. Finalement, nous avons démontré que la boucle autocrine IGF-2/IGF-1R est nécessaire pour le GLP-1 i) pour protéger les cellules ß contre l'apoptose induite par les cytokines, ii) pour améliorer la compétence au glucose et iii) pour augmenter la prolifération des cellules ß. Résumé tout public : Contrôle de la masse des cellules ß pancréatiques et de leur fonction par les hormones gluco-incrétines: Identification de nouveaux mécanismes régulateurs pour le traitement du diabète Chez les mammifères, la concentration de glucose sanguine (glycémie) est régulée et maintenue à une valeur relativement constante d'environ 5 mM. Cette régulation est principalement contrôlée par 2 hormones produites par les îlots pancréatiques de Langerhans: l'insuline sécrétée par les cellules ß et le glucagon sécrété par les cellules a. A la suite d'un repas, l'augmentation de la glycémie entraîne la sécrétion d'insuline ce qui permet le stockage du glucose dans le foie, les muscles et le tissu adipeux afin de diminuer le taux de glucose circulant. Lors d'un jeûne, la diminution de la glycémie permet la sécrétion de glucagon favorisant alors la production de glucose par le foie, normalisant ainsi la glycémie. Le nombre de cellules ß et leur capacité sécrétoire s'adaptent aux variations de la demande métabolique pour assurer une normoglycémie. Une destruction complète ou partielle des cellules ß conduit respectivement au diabète de type 1 et de type 2. Bien que l'augmentation de la glycémie soit le facteur stimulant de la sécrétion d'insuline, des hormones gluco-incrétines, principalement le GLP-1 (glucagon-like peptide-1) et le GIP (glucose-dependent insulinotropic polypeptide) sont libérées par l'intestin en réponse aux nutriments (glucose, acides gras) et agissent au niveau des cellules ß, potentialisant la sécrétion d'insuline induite par le glucose, stimulant leur prolifération, induisant la différentiation de cellules précurseurs en cellules ß matures et les protègent contre la mort cellulaire (apoptose). Afin d'étudier plus en détail ces mécanismes, nous avons généré des souris déficientes pour les récepteurs du GIP et du GLP-l. Les îlots pancréatiques de ces souris présentent un défaut de sécrétion d'insuline stimulée par le glucose et une sensibilité accrue à l'apoptose par rapport aux îlots de souris contrôles. Nous avons donc cherché les gènes régulés pas ces hormones contrôlant la sécrétion d'insuline et la protection contre l'apoptose. Nous avons constaté une forte diminution de l'expression du récepteur à l'IGF-1 (IGF-1R) dans les îlots de souris déficientes pour les récepteurs des gluco-incrétines. Nous avons démontré dans un model de cellules ß en culture et d'îlots que le GLP-1 augmentait l'expression d'IGF-1R et la sécrétion de son ligand (IGF-2) permettant l'activation de la voie de signalisation. Finalement, nous avons montré que l'activation de la boucle IGF-2/IGF-1R induite par le GLP-1 était nécessaire pour la protection contre l'apoptose, l'augmentation de la sécrétion et la prolifération des cellules ß.
Resumo:
Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.
Resumo:
During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A (SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUT family can be divided into three subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myo-inositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intra-cellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H+/myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.
Resumo:
The role of lipase in the regulation of upper gastrointestinal function is poorly understood. We studied the effect of orlistat, a new, potent, and highly specific lipase inhibitor, on gastric emptying, cholecystokinin (CCK) release, and pancreaticobiliary secretion. Three groups of studies were performed in nine healthy volunteers, using the double-indicator technique with a triple-lumen duodenal tube, polyethylene glycol 4000 as a duodenal perfusion marker, and 99mTc-diethylenetriamine pentaacetic acid as a meal marker. Gastric emptying, pancreaticobiliary output, and postprandial plasma CCK levels were measured after ingestion of the following isocaloric 500-ml liquid meals with or without 200 mg orlistat: 1) a pure fat meal (10% Intralipid), 2) a meal containing free fatty acids, or 3) an albumin-glucose meal. All experiments were performed in a randomized, placebo-controlled, crossover design. Orlistat markedly inhibited lipase activity in all three experiments. Orlistat given with the fat meal reduced CCK release and output of lipase, trypsin, and bilirubin and accelerated the rate of gastric emptying (P < 0.05). After ingestion of the free fatty acid or albumin-glucose meal, orlistat had no significant effect on any of these parameters. We conclude that lipase plays an important, nutrient-specific role in the regulation of gastric emptying and pancreaticobiliary secretion after ingestion of fatty meals in humans.
Resumo:
Intracellular glucose signalling pathways control the secretion of glucagon and insulin by pancreatic islet α- and β-cells, respectively. However, glucose also indirectly controls the secretion of these hormones through regulation of the autonomic nervous system that richly innervates this endocrine organ. Both parasympathetic and sympathetic nervous systems also impact endocrine pancreas postnatal development and plasticity in adult animals. Defects in these autonomic regulations impair β-cell mass expansion during the weaning period and β-cell mass adaptation in adult life. Both branches of the autonomic nervous system also regulate glucagon secretion. In type 2 diabetes, impaired glucose-dependent autonomic activity causes the loss of cephalic and first phases of insulin secretion, and impaired suppression of glucagon secretion in the postabsorptive phase; in diabetic patients treated with insulin, it causes a progressive failure of hypoglycaemia to trigger the secretion of glucagon and other counterregulatory hormones. Therefore, identification of the glucose-sensing cells that control the autonomic innervation of the endocrine pancreatic and insulin and glucagon secretion is an important goal of research. This is required for a better understanding of the physiological control of glucose homeostasis and its deregulation in diabetes. This review will discuss recent advances in this field of investigation.