940 resultados para paired speaking test
Resumo:
The definition and operationalisation of interactional competence in speaking tests that entail co-construction of discourse is an area of language testing requiring further research. This article explores the reactions of four trained raters to paired candidates who oriented to asymmetric patterns of interaction in a discussion task. Through an analysis of candidate discourse combined with rater notes, stimulated verbal recalls, rater discussions and scores awarded for interactional effectiveness, the article examines the extent to which raters compensate or penalise candidates for their role in co-constructing asymmetric interactional patterns. The article argues that key features of the interaction are perceived by the raters as mutual achievements, and it further suggests that the awarding of shared scores for interactional competence is one way of acknowledging the inherently co-constructed nature of interaction in a paired speaking test.
Resumo:
Paired speaking tests are now commonly used in both high-stakes testing and classroom assessment contexts. The co-construction of discourse by candidates is regarded as a strength of paired speaking tests, as candidates have the opportunity to display a wider range of interactional competencies, including turn taking, initiating topics and engaging in extended discourse with a partner, rather than an examiner. However, the impact of the interlocutor in such jointly negotiated discourse and the implications for assessing interactional competence are areas of concern. This article reports on the features of interactional competence that were salient to four trained raters of 12 paired speaking tests through the analysis of rater notes, stimulated verbal recalls and rater discussions. Findings enabled the identification of features of the performance noted by raters when awarding scores for interactional competence, and the particular features associated with higher and lower scores. A number of these features were seen by the raters as mutual achievements, which raises the issue of the extent to which it is possible to assess individual contributions to the co-constructed performance. The findings have implications for defining the construct of interactional competence in paired speaking tests and operationalising this in rating scales.
Resumo:
Paired speaking tests are increasingly used in both low-and high-stakes second language assessment contexts. Until recently, very little was known about the way in which raters interpret and apply descriptors relating to interactional competence to a performance that is co-constructed. This book presents a study which explores the interactional features of a paired speaking test that were sailient to raters and the extent to which raters viewed the performance as separable. The study shows that raters use their own frames of reference to interpret descriptors and that they viewed certain features of the performance as mutual accomplishments. The book takes us 'beyond scores', and in doing so, contributes to the growing body of research on paired speaking tests.
Resumo:
Oxytocin (OT) is known to be involved in anxiety, as well as cardiovascular and hormonal regulation. The objective of this study was to assess the acute effect of intranasally administered OT on subjective states, as well as cardiovascular and endocrine parameters, in healthy volunteers (n = 14) performing a simulated public speaking test. OT or placebo was administered intranasally 50 min before the test. Assessments were made across time during the experimental session: (1) baseline (-30 min); (2) pre-test (-15 min); (3) anticipation of the speech (50 min); (4) during the speech (1:03 h), post-test time 1 (1:26 h), and post-test time 2 (1:46 h). Subjective states were evaluated by self-assessment scales. Cortisol serum and plasma adrenocorticotropic hormone (ACTH) were measured. Additionally, heart rate, blood pressure, skin conductance, and the number of spontaneous fluctuations in skin conductance were measured. Compared with placebo, OT reduced the Visual Analogue Mood Scale (VAMS) anxiety index during the pre-test phase only, while increasing sedation at the pre-test, anticipation, and speech phases. OT also lowered the skin conductance level at the pre-test, anticipation, speech, and post-test 2 phases. Other parameters evaluated were not significantly affected by OT. The present results show that OT reduces anticipatory anxiety, but does not affect public speaking fear, suggesting that this hormone has anxiolytic properties.
Relation between speaking space of the /s/ sound and freeway space in dentate and edentate subjects.
Resumo:
The purpose of this study is to assess the relation between the speaking space of the /s/ sound and the freeway space in two subject groups. One group had natural dentition (Group I, n = 61) and the other comprised complete denture wearers (Group II, n = 33). The analysis was done by means of a jaw-tracking device (K6-I Diagnostic System, Myotronics Research Inc., Seattle, WA, USA). Freeway space was determined by asking the subjects to occlude from the postural rest position. Speaking space of /s/ was measured during the pronunciation of the word seis and comprised the mean distance from the /s/ speaking position to maximal intercuspation. A weak correlation was found between the speaking space of /s/ and the freeway space in Group I (r = 0.41, p < 0.01), but in Group II, the correlation was stronger (r = 0.75, p < 0.01). The speaking space of /s/ and freeway space were different in Group I, but statistically similar in Group II (paired t-test, alpha = 0.05). It can be suggested that anatomic changes following prosthetic procedures caused a functional adaptation which resulted in more similar values for the speaking space of /s/ and the freeway space.
Resumo:
Reliability and validity in the testing of spoken language are essential in order to assess learners' English language proficiency as evidence of their readiness to begin courses in tertiary institutions. Research has indicated that the task chosen to elicit language samples can have a marked effect on both the nature of the interaction, including the power differential, and assessment, raising the issue of ethics. This exploratory studey, with a group of 32 students from the Peoples's Republic of China preparing for tertiary study in Singapore, compares test-takers' reactions to the use of an oral proficiency interview and a pair interaction.
Resumo:
Interactional competence has emerged as a focal point for language testing researchers in recent years. In spoken communication involving two or more interlocutors, the co-construction of discourse is central to successful interaction. The acknowledgement of co-construction has led to concern over the impact of the interlocutor and the separability of performances in speaking tests involving interaction. The purpose of this article is to review recent studies of direct relevance to the construct of interactional competence and its operationalisation by raters in the context of second language speaking tests. The review begins by tracing the emergence of interaction as a criterion in speaking tests from a theoretical perspective, and then focuses on research salient to interactional effectiveness that has been carried out in the context of language testing interviews and group and paired speaking tests.
Resumo:
Tegtbur et al. [23] devised a new method able to estimate the intensity at maximal lactate steady state termed lactate minimum test. According to Billat et al. [7], no studies have yet been published on the affect of training on highest blood lactate concentration that can be maintained over time without continual blood lactate accumulation. Therefore, the aim of the present study was to verify the effect of soccer training on the running speed and the blood lactate concentration (BLC) at the lactate minimum test (Lac(min)). Thirteen Brazilian male professional soccer players, all members of the same team playing at National level, volunteered for this study. Measurements were carried out before (pre) and after (post) eight weeks of soccer training. The Lac(min) test was adapted to the procedures reported by Tegtbur et al. [23]. The running speed at the Lac(min) test was taken when the gradient of the line was zero. Differences in running speed and blood lactate concentration at the Lac(min) test before (pre) and after (post) the training program were evaluated by Student's paired t-test. The training program increased the running speed at the Lac(min) test (14.94 +/- 0.21 vs. 15.44 +/- 0.42* km(.)h(-1)) and the blood lactate concentration (5.11 +/- 2.31 vs. 6.93 +/- 1.33* mmol(.)L(-1)). The enhance in the blood lactate concentration may be explained by an increase in the lactate/H+ transport capacity of human skeletal muscle verified by other authors.
Resumo:
A cross-sectional microhardness (CSMH) test was carried out in human dental enamel exposed to a demineralizing solution in order to evaluate two different times of indentation in sound tissue and artificially induced caries. Twenty caries-free extracted human molars had one of their smooth surfaces sectioned and the enamel surface was isolated with nail polish except for an area of 6 mm2. These specimens were submitted to artificially induced enamel caries on a lactate buffer containing 0.1 ppm fluoride (F) during 28 days. All specimens were bisected to create groups A and B in which CSMH test was performed employing a Knoop indenter with a 25g load for 5 or 10 s, respectively. Student's paired t-test (p<0.05) was used to determine statistically significant differences between group A and B in 7 depths. There were no significant differences between any of the analyzed depths. Since the present experiment showed no significant difference when comparing indentations made with a 25 g load during either 5 or 10 s in different depths, this method can be used with either one of the time intervals tested without compromising a CSMH test on artificially demineralized human enamel.
Resumo:
This study aimed to evaluate whether equine serum amyloid A (SAA) concentrations could be reliably measured in plasma with a turbidimetric immunoassay previously validated for equine SAA concentrations in serum. Paired serum and lithium-heparin samples obtained from 40 horses were evaluated. No difference was found in SAA concentrations between serum and plasma using a paired t test (P=0.48). The correlation between paired samples was 0.97 (Spearman's rank P<0.0001; 95% confidence interval 0.95-0.99). Passing-Bablok regression analyses revealed no differences between paired samples. Bland-Altman plots revealed a positive bias in plasma compared to serum but the difference was not considered clinically significant. The results indicate that lithium-heparin plasma samples are suitable for measurement of equine SAA using this method. Use of either serum or plasma allows for greater flexibility when it comes to sample collection although care should be taken when comparing data between measurements from different sample types.
Resumo:
Background/significance. The scarcity of reliable and valid Spanish language instruments for health related research has hindered research with the Hispanic population. Research suggests that fatalistic attitudes are related to poor cancer screening behaviors and may be one reason for low participation of Mexican-Americans in cancer screening. This problem is of major concern because Mexican-Americans constitute the largest Hispanic subgroup in the U.S.^ Purpose. The purposes of this study were: (1) To translate the Powe Fatalism Inventory, (PFI) into Spanish, and culturally adapt the instrument to the Mexican-American culture as found along the U.S.-Mexico border and (2) To test the equivalence between the Spanish translated, culturally adapted version of the PFI and the English version of the PFI to include clarity, content validity, reading level and reliability.^ Design. Descriptive, cross-sectional.^ Methods. The Spanish language translation used a translation model which incorporates a cultural adaptation process. The SPFI was administered to 175 bilingual participants residing in a midsize, U.S-Mexico border city. Data analysis included estimation of Cronbach's alpha, factor analysis, paired samples t-test comparison and multiple regression analysis using SPSS software, as well as measurement of content validity and reading level of the SPFI. ^ Findings. A reliability estimate using Cronbach's alpha coefficient was 0.81 for the SPFI compared to 0.80 for the PFI in this study. Factor Analysis extracted four factors which explained 59% of the variance. Paired t-test comparison revealed no statistically significant differences between the SPFI and PFI total or individual item scores. Content Validity Index was determined to be 1.0. Reading Level was assessed to be less than a 6th grade reading level. The correlation coefficient between the SPFI and PFI was 0.95.^ Conclusions. This study provided strong psychometric evidence that the Spanish translated, culturally adapted SPFI is an equivalent tool to the English version of the PFI in measuring cancer fatalism. This indicates that the two forms of the instrument can be used interchangeably in a single study to accommodate reading and speaking abilities of respondents. ^
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.