992 resultados para oxygen separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-delta (y less than or equal to 0.4) and BaBixCo0.2Fe0.8-xP3-delta (x=0.1-0.5) The materials exhibited considerable high oxygen permeability at high temperature. The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-delta membrane reached about 0.77 x 10(-6) mol/cm(2) s under an air/helium oxygen partial pressure gradient at 900 degrees C, which was much higher than that of other bismuth-contained mixed conducting membranes. The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content. The materials also demonstrated excellent reversibility of oxygen adsorption and desorption. Stable time-related oxygen permeation fluxes were found for BaBi0.2CO0.35Fe0.45O3-delta and BaBi0.3Co0.2Fe0.5O3-delta a membranes at 875 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation. The nea method takes the advantage of lower calcination temperature for phase formation. lower membrane sintering temperature and higher relative density over the standard ceramic method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium-doped perovskite-type membrane materials of BaCo0.4Fe0.6-xZrxO3-delta (x = 0-0.4) with mixed oxygen ion and electron conductivity were synthesized through a method of combining citric and EDTA acid complexes. The results of X-ray diffraction (XRD), oxygen temperature-programmed desorption (O-2-TPD) and hydrogen temperature-programmed reduction (H-2-TPR) showed that the incorporation of proper amount of zirconium into BaCo0.4Fe0.6O3-delta could stabilize the ideal and cubic structure of perovskite. Studies on the oxygen permeability of the as-synthesized membrane disks under air/He gradient indicated that the content of zirconium in these materials had great effects on oxygen permeation flux, activation energy for oxygen permeation and operation stability. The high oxygen permeation flux of 0.90 ml cm(-2) min(-1) at 950degreesC, the single activation energy for oxygen permeation in the range of 600-950 degreesC and the long-term operation stability at a relatively lower operational temperature of 800 degreesC under air/He gradient were achieved for the BaCo0.4Fe0.4Zr0.2O3-delta material. Meanwhile, the effect of carbon dioxide on structural stability and oxygen permeability of this material was also studied in detail, which revealed that the reversible stability could be attained for it. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic demixing and decomposition were studied on three La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen-separation hollow fibre membrane modules, which were operated under a 0.21/0.009bar oxygen partial pressure difference at 950°C for 1128, 3672 and 5512h, respectively. The post-operation membranes were characterized by Secondary Ion Mass Spectrometry, Scanning Electronic Microscope, Energy Dispersive Spectrum and X-ray Diffraction. The occurrence of kinetic demixing and decomposition was confirmed through the microstructural evolution of the membranes. Secondary-phase grains were found on the air-side surface of the membranes after the long-term operation and Co and Fe enrichment as well as La depletion was found on the surface and in the bulk at the air side. Cation diffusivities were found to be in the order Co>Fe>Sr>La. Kinetic demixing and decomposition rates of the membranes at the air side were found to be self-accelerating with time; the role of A-site deficiency in the perovskite lattice in the bulk near the air side surface is implicated in the mechanism. The oxygen permeability was not affected by the kinetic demixing and decomposition of the material during long-term operation (up to 5512h), however, we may expect permeability to be affected by secondary phase formation on the air-side surface at even longer operational times. © 2010 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goals of this project are to develop a Reactive Air Brazing (RAB) alloy and process for joining Barium strontium cobalt ferrite (BSCF), and to develop a fundamental understanding of the wettability and microstructral development due to reaction kinetics in BSCF/Ag-MexOy systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dual-phase membrane of La0.15Sr0.85Ga0.3Fe0.7O3-delta-Ba0.5Sr0.5Fe0.2Co0.8O3-delta (LSGF-BSCF) was prepared successfully. This membrane was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA). This membrane has a dense dual-phase structure: LSGF being the dense body of this membrane and BSCF as another phase running along the LSGF body. This structure is favorable for the oxygen permeation through the membrane. The oxygen permeation test shows that the oxygen permeation flux of LSGF-BSCF membrane (Jo(2) = 0.45 ml/min cm(2), at 915 degreesC) is much higher than that of LSGF membrane (Jo(2) = 0.05 ml/min cm(2)). Thickness dependence of oxygen permeation indicates that the oxygen permeation is controlled by the bulk diffusion. Compared to pure BSCF the dual-phase membrane of LSGF-BSCF is stable in reducing atmosphere. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A dense Ba0.5Sr0.5Co0.8Fe0.2O3-delta membrane tube was prepared by the extruding method. Furthermore, a membrane reactor with this tubular membrane was successfully applied to partial oxidation of methane (POM) reaction, in which the separation of oxygen from air and the partial oxidation of methane are integrated in one process. At 875degreesC, 94% of methane conversion, 98% of CO selectivity, 95% of H-2 selectivity, and as high as 8.8 mL/(min (.) cm(2)) of oxygen flux were obtained. In POM reaction condition. the membrane tube shows a very good stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An oxygen permeable mixed ion and electron conducting membrane (OPMIECM) was used as an oxygen transfer medium as well as a catalyst for the oxidative dehydrogenation of ethane to produce ethylene. O2- species transported through the membrane reacted with ethane to produce ethylene before it recombined to gaseous O-2, so that the deep oxidation of the products was greatly suppressed. As a result, 80% selectivity of ethylene at 84% ethane conversion was achieved, whereas 53.7% ethylene selectivity was obtained using a conventional fixed-bed reactor under the same reaction conditions with the same catalyst at 800 degreesC. A 100 h continuous operation of this process was carried out and the result indicates the feasibility for practical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La0.15Sr0.85Ga0.3Fe0.7O3-delta (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-delta (LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H-2-TPR, O-2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H-2 in Ar from 20 degreesC to 1020 degreesC, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ . mol(-1), respectively The difference in oxygen permeation fluxes was correlated with the difference in oxygen vacancy concentrations for the two materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel zirconium-based membrane material of BaCo0.4Fe0.4Zr0.2O3-6 with cubic perovskite structure was synthesized for the first time through a method of citric and EDTA acid combined complexes. The structural stability was characterized by XRD, O-2-TPD and H-2-TPR techniques respectively. The high oxygen permeation flux of 0.873 mL/cm(2) min at 950 degreesC was obtained under He/Air gradient. Meanwhile, the single activation energy for oxygen permeation and the long-term steady operation of 200 h at 800 degreesC were achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Póster presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phase structure and stability of three typical mixed ionic and electronic conducting perovskite-type membranes, SrCo0.8Fe0.2O3-delta (SCF), Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) and BaCo0.4Fe0.4Zr0.2O3-delta (BCFZ) were studied by in situ high temperature X-ray diffraction at temperatures from 303 to 1273 K and under different atmospheres (air, 2% O-2 in Ar and pure Ar) at 1173 K. By analyzing their lattice parameters the thermal expansion coefficients (TECs) of BSCF, SCF and BCZF are obtained to be 11.5 x 10(-6) K-1, 17.9 x 10(-6) K-1 and 10.3 x 10(-6) K-1, respectively. A relationship between phase stability and TEC was proposed: the higher is the TEC, the lower is the operation stability of the perovskite materials. (C) 2005 Elsevier B.V. All rights reserved.