989 resultados para orthogonal projections
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN]This paper deals with the orthogonal projection (in the Frobenius sense) AN of the identity matrix I onto the matrix subspace AS (A ? Rn×n, S being an arbitrary subspace of Rn×n). Lower and upper bounds on the normalized Frobenius condition number of matrix AN are given. Furthermore, for every matrix subspace S ? Rn×n, a new index bF (A, S), which generalizes the normalized Frobenius condition number of matrix A, is defined and analyzed...
Resumo:
[EN]We analyze the best approximation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We study orthogonal projections of generic embedded hypersurfaces in 'R POT.4' with boundary to 2-spaces. Therefore, we classify simple map germs from 'R POT.3' to the plane of codimension less than or equal to 4 with the source containing a distinguished plane which is preserved by coordinate changes. We also go into some detail on their geometrical properties in order to recognize the cases of codimension less than or equal to 1.
Resumo:
We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings.
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
Anti-doping authorities have high expectations of the athlete steroidal passport (ASP) for anabolic-androgenic steroids misuse detection. However, it is still limited to the monitoring of known well-established compounds and might greatly benefit from the discovery of new relevant biomarkers candidates. In this context, steroidomics opens the way to the untargeted simultaneous evaluation of a high number of compounds. Analytical platforms associating the performance of ultra-high pressure liquid chromatography (UHPLC) and the high mass-resolving power of quadrupole time-of-flight (QTOF) mass spectrometers are particularly adapted for such purpose. An untargeted steroidomic approach was proposed to analyse urine samples from a clinical trial for the discovery of relevant biomarkers of testosterone undecanoate oral intake. Automatic peak detection was performed and a filter of reference steroid metabolites mass-to-charge ratio (m/z) values was applied to the raw data to ensure the selection of a subset of steroid-related features. Chemometric tools were applied for the filtering and the analysis of UHPLC-QTOF-MS(E) data. Time kinetics could be assessed with N-way projections to latent structures discriminant analysis (N-PLS-DA) and a detection window was confirmed. Orthogonal projections to latent structures discriminant analysis (O-PLS-DA) classification models were evaluated in a second step to assess the predictive power of both known metabolites and unknown compounds. A shared and unique structure plot (SUS-plot) analysis was performed to select the most promising unknown candidates and receiver operating characteristic (ROC) curves were computed to assess specificity criteria applied in routine doping control. This approach underlined the pertinence to monitor both glucuronide and sulphate steroid conjugates and include them in the athletes passport, while promising biomarkers were also highlighted.
Resumo:
This thesis addresses the problem of computing the minimal and maximal diameter of the Cayley graph of Coxeter groups. We first present and assert relevant parts of polytope theory and related Coxeter theory. After this, a method of contracting the orthogonal projections of a polytope from Rd onto R2 and R3, d ¸ 3 is presented. This method is the Equality Set Projection algorithm that requires a constant number of linearprogramming problems per facet of the projection in the absence of degeneracy. The ESP algorithm allows us to compute also projected geometric diameters of high-dimensional polytopes. A representation set of projected polytopes is presented to illustrate the methods adopted in this thesis.
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table
Resumo:
Two algorithms for finding the point on non-rational/rational Bezier curves of which the normal vector passes through a given external point are presented. The algorithms are based on Bezier curves generation algorithms of de Casteljau's algorithm for non-rational Bezier curve or Farin's recursion for rational Bezier curve, respectively. Orthogonal projections from the external point are used to guide the directional search used in the proposed iterative algorithms. Using Lyapunov's method, it is shown that each algorithm is able to converge to a local minimum for each case of non-rational/rational Bezier curves. It is also shown that on convergence the distance between the point on curves to the external point reaches a local minimum for both approaches. Illustrative examples are included to demonstrate the effectiveness of the proposed approaches.
Resumo:
We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.
Resumo:
The problem treated in this dissertation is to establish boundedness for the iterates of an iterative algorithm
in
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In der vorliegenden Arbeit wird die Variation abgeschlossener Unterräume eines Hilbertraumes untersucht, die mit isolierten Komponenten der Spektren von selbstadjungierten Operatoren unter beschränkten additiven Störungen assoziiert sind. Von besonderem Interesse ist hierbei die am wenigsten restriktive Bedingung an die Norm der Störung, die sicherstellt, dass die Differenz der zugehörigen orthogonalen Projektionen eine strikte Normkontraktion darstellt. Es wird ein Überblick über die bisher erzielten Resultate gegeben. Basierend auf einem Iterationsansatz wird eine allgemeine Schranke an die Variation der Unterräume für Störungen erzielt, die glatt von einem reellen Parameter abhängen. Durch Einführung eines Kopplungsparameters wird das Ergebnis auf den Fall additiver Störungen angewendet. Auf diese Weise werden zuvor bekannte Ergebnisse verbessert. Im Falle von additiven Störungen werden die Schranken an die Variation der Unterräume durch ein Optimierungsverfahren für die Stützstellen im Iterationsansatz weiter verschärft. Die zugehörigen Ergebnisse sind die besten, die bis zum jetzigen Zeitpunkt erzielt wurden.