252 resultados para oilseed radish


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W) on a Red Latosol (Oxisol), in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation) combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp). The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish, millet and pigeon pea. Rice yields were lowest when grown after sorghum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb) or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg) and corn spurry (Spergula arvensis L.). The control treatment consisted of resident vegetation (fallow in the winter season). In the summer, a mixture of pearl millet (Pennisetum americanum L.) with sunnhemp (Crotalaria juncea L.) or with soybean (Glycine max L.) was sown in all plots. Soil cores (0-10 cm) and root samples were collected in six growing seasons (winter and summer of each year). Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops (blue lupin, hairy vetch, oat, oilseed radish, wheat and fallow) on a Rhodic Hapludox in southwestern Paraná, under no-tillage (NT) and conventional tillage (CT). The application of phosphate fertilizer in NT rows increased inorganic P in the labile and moderately labile forms, and soil disturbance in CT redistributed the applied P in the deeper layers, increasing the moderately labile P concentration in the subsurface layers. Black oat and blue lupin were the most efficient P-recyclers and under NT, they increased the labile P content in the soil surface layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Cassava (Manihot esculenta Crantz) is a highly mycotrophic crop, and prior soil cover may affect the density of arbuscular mycorrhizal fungi (AMFs), as well as the composition of the AMFs community in the soil. The aim of this study was to evaluate the occurrence and the structure of AMFs communities in cassava grown after different cover crops, and the effect of the cover crop on mineral nutrition and cassava yield under an organic farming system. The occurrence and structure of the AMFs community was evaluated through polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A randomized block experimental design was used with four replications. Six different cover crop management systems before cassava were evaluated: black oats, vetch, oilseed radish, intercropped oats + vetch, intercropped oats + vetch + oilseed radish, plus a control (fallow) treatment mowed every 15 days. Oats as a single crop or oats intercropped with vetch or with oilseed radish increased AMFs inoculum potential in soil with a low number of propagules, thus benefiting mycorrhizal colonization of cassava root. The treatments did not affect the structure of AMFs communities in the soil since the AMFs communities were similar in cassava roots in succession to different cover crops. AMFs colonization was high despite high P availability in the soil. The cassava crop yield was above the regional average, and P levels in the leaves were adequate, regardless of which cover crop treatments were used. One cover crop cycle prior to the cassava crop was not enough to observe a significant response in variables, P in plant tissue, crop yield, and occurrence and structure of AMFs communities in the soil. In the cassava roots in succession, the plant developmental stage affected the groupings of the structure of the AMF community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the susceptibility of winter crops to Pratylenchus brachyurus and their effect on the population of phytonematodes in the maize. To study the effect of the plants on nematodes, an experiment was set up in sandy, naturally-infested soil. The area was divided into strips, consisting of six blocks of 16 treatments, with eight winter treatments, subdivided on the basis of the fertilizer used (organic: bird litter, and synthetic: NPK). The initial nematode population was determined by sampling the soil (100 cm(3)) and weeds (10 g of root). The winter treatments put in place (bristle oats, chickpea, vetch bean, common bean, oilseed radish, wheat, intercropped bristle oats + oilseed radish and fallow), and the nematode population determined 100 days after sowing. Subsequently, two maize crops (summer and short season) were planted, and the nematode population in the soil and roots determined during crop full bloom. To evaluate the susceptibility of winter crops to nematodes, an experiment was conducted under controlled conditions, determining the nematode reproduction factor (RF) in the treatments described above. Both in the field and under controlled conditions, it was observed that the bristle oats, oilseed radish and intercropped oats + oilseed radish exhibited lower reproduction rates for P. brachyurus. In the field, lower population of nematodes was observed with the application of bird litter. Under controlled conditions, the highest RF were observed in the fallow plot and under common bean and chickpea, in that order.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em sistema de semeadura direta, os resíduos das culturas de entressafra são utilizados com as finalidades de proteger a superfície do solo dos agentes erosivos e de promover a ciclagem de nutrientes. O objetivo deste trabalho foi avaliar a produção de matéria seca e o acúmulo de nutrientes nos resíduos vegetais provenientes de diferentes sequências de culturas em semeadura direta. O experimento foi conduzido em Jaboticabal-SP (48° 18' W e 21° 15' S), em um Latossolo Vermelho eutrófico. O delineamento experimental foi em faixas, com três repetições. Os tratamentos foram constituídos pela combinação de três sequências de culturas de verão (rotação soja-milho e monoculturas de milho e de soja) com sete culturas de entressafra (milho, sorgo, girassol, crotalária, guandu, nabo forrageiro e milheto). O experimento iniciou-se em 2002, e o presente estudo refere-se aos anos agrícolas 2007/2008 e 2008/2009. Avaliaram-se as quantidades de matéria seca e o acúmulo de nutrientes pelas culturas. As culturas com colheita de grãos na entressafra (milho, sorgo e girassol) produziram resíduos com menor quantidade de nutrientes acumulados e em menor quantidade de matéria seca, quando comparadas às culturas com trituração no florescimento (crotalária, guandu, nabo forrageiro e milheto). Milheto e crotalária apresentaram as maiores produções de matéria seca e os maiores acúmulos de nutrientes. O milheto mostrou os maiores acúmulos de K e Mg, e a crotalária, maiores acúmulos de N e P. As gramíneas cultivadas na entressafra apresentaram maior desenvolvimento quando em sucessão ao cultivo de soja no verão anterior, com maior produção de matéria seca de milheto e, também, maior produtividade de grãos de milho e sorgo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os resíduos vegetais das culturas, ao se decomporem, alteram os atributos químicos do solo e, como consequência, influenciam a produtividade das culturas em sucessão. O objetivo deste trabalho foi avaliar os atributos químicos do solo e a produtividade das culturas de soja, milho e arroz, cultivadas no verão, em sucessão a culturas de inverno em semeadura direta. O experimento foi realizado em Jaboticabal-SP (48 ° 18 ' 58 '' W e 21 ° 15 ' 22 '' S), em um Latossolo Vermelho eutrófico. O delineamento experimental foi em blocos ao acaso, no esquema em faixas, com três repetições. Os tratamentos foram constituídos pela combinação de quatro sequências de culturas de verão (monoculturas de milho e soja e rotações soja/milho e arroz/feijão/algodão) com sete culturas de inverno (milho, girassol, nabo forrageiro, milheto, guandu, sorgo e crotalária). Os cultivos iniciaram-se em 2002. Após o manejo das culturas de inverno e antes da semeadura das culturas de verão do ano agrícola 2006/2007, foram coletadas amostras de solo nas camadas de 0-2,5; 2,5-5,0; 5-10; 10-20; e 20-30 cm. Nas amostras de solo, foram determinados: teores de matéria orgânica, pH, teores de P (resina), K, Ca e Mg trocáveis e acidez potencial (H + Al). As sequências de verão rotação soja/milho e milho em monocultura proporcionaram no solo menores teores de matéria orgânica na camada de 0-10 cm e de P do solo na camada de 0-20 cm. Na sequência de verão arroz/feijão/algodão, maiores teores de K foram proporcionados pelas culturas de inverno crotalária e nabo forrageiro, na camada de 0-10 cm, e milheto, na de 0-2,5 cm. Crotalária, milheto, nabo forrageiro e sorgo, cultivados no inverno, proporcionaram maiores teores de matéria orgânica no solo na camada de 0-30 cm. Maiores teores de P no solo foram proporcionados pela crotalária, na camada de 0-2,5 cm, e pelo nabo forrageiro, na de 0-5 cm. Maiores produtividades de soja, como monocultura de verão, foram obtidas após nabo forrageiro e crotalária e, quando em rotação com milho no verão, após nabo forrageiro, crotalária e milheto. Maiores produtividades de milho foram obtidas após nabo forrageiro, milheto e guandu, e menor produtividade de arroz foi obtida após sorgo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this research was to evaluate crop yield and some characteristics and yield components of transgenic soybean cultivars sown after different winter cover crops in the first year under no tillage system. The experimental design was the completely randomized block with split plots and four replications. The main plots consisted of five winter cover crops, white oat (Avena sativa L.), forage turnip (Raphanus sativus L.), barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and ground pea (Pisum sativum L.) and an area under fallow (spontaneous vegetation). The subplots consisted of six soybean cultivars (BRS 243 RR, BRS 245 RR, BRS 247 RR, BRS 255 RR, BRS 256 RR and BRS 244 RR). Variance analysis for agronomic characteristics showed that soybean yield components were influenced by the interaction between winter crop and soybean cultivar. Thus, final population, number of nodes and pods per plant, nodes dry matter per plant, number of grains per pod and grain yield were affected significantly. When soybean nodulation was evaluated, the treatment with the area under fallow showed lower values. There was difference among winter crops for BRS 243 RR grain yield, white oat showed the highest values.