971 resultados para obstacle avoidance
Resumo:
In recent years, ZigBee has been proven to be an excellent solution to create scalable and flexible home automation networks. In a home automation network, consumer devices typically collect data from a home monitoring environment and then transmit the data to an end user through multi-hop communication without the need for any human intervention. However, due to the presence of typical obstacles in a home environment, error-free reception may not be possible, particularly for power constrained devices. A mobile sink based data transmission scheme can be one solution but obstacles create significant complexities for the sink movement path determination process. Therefore, an obstacle avoidance data routing scheme is of vital importance to the design of an efficient home automation system. This paper presents a mobile sink based obstacle avoidance routing scheme for a home monitoring system. The mobile sink collects data by traversing through the obstacle avoidance path. Through ZigBee based hardware implementation and verification, the proposed scheme successfully transmits data through the obstacle avoidance path to improve network performance in terms of life span, energy consumption and reliability. The application of this work can be applied to a wide range of intelligent pervasive consumer products and services including robotic vacuum cleaners and personal security robots1.
Resumo:
Locomotion generates a visual movement pattern characterized as optic flow. To explore how the locomotor adjustments are affected by this pattern, an experimental paradigm was developed to eliminate optic flow during obstacle avoidance. The aim was to investigate the contribution of optic flow in obstacle avoidance by using a stroboscopic lamp. Ten young adults walked on an 8m pathway and stepped over obstacles at two heights. Visual sampling was determined by a stroboscopic lamp (static and dynamic visual sampling). Three-dimensional kinematics data showed that the visual information about self-motion provided by the optic flow was crucial for estimating the distance from and the height of the obstacle. Participants presented conservative behavior for obstacle avoidance under experimental visual sampling conditions, which suggests that optic flow favors the coupling of vision to adaptive behavior for obstacle avoidance.
Resumo:
La robótica ha evolucionado exponencialmente en las últimas décadas, permitiendo a los sistemas actuales realizar tareas sumamente complejas con gran precisión, fiabilidad y velocidad. Sin embargo, este desarrollo ha estado asociado a un mayor grado de especialización y particularización de las tecnologías implicadas, siendo estas muy eficientes en situaciones concretas y controladas, pero incapaces en entornos cambiantes, dinámicos y desestructurados. Por eso, el desarrollo de la robótica debe pasar por dotar a los sistemas de capacidad de adaptación a las circunstancias, de entendedimiento sobre los cambios observados y de flexibilidad a la hora de interactuar con el entorno. Estas son las caracteristicas propias de la interacción del ser humano con su entorno, las que le permiten sobrevivir y las que pueden proporcionar a un sistema inteligencia y capacidad suficientes para desenvolverse en un entorno real de forma autónoma e independiente. Esta adaptabilidad es especialmente importante en el manejo de riesgos e incetidumbres, puesto que es el mecanismo que permite contextualizar y evaluar las amenazas para proporcionar una respuesta adecuada. Así, por ejemplo, cuando una persona se mueve e interactua con su entorno, no evalúa los obstáculos en función de su posición, velocidad o dinámica (como hacen los sistemas robóticos tradicionales), sino mediante la estimación del riesgo potencial que estos elementos suponen para la persona. Esta evaluación se consigue combinando dos procesos psicofísicos del ser humano: por un lado, la percepción humana analiza los elementos relevantes del entorno, tratando de entender su naturaleza a partir de patrones de comportamiento, propiedades asociadas u otros rasgos distintivos. Por otro lado, como segundo nivel de evaluación, el entendimiento de esta naturaleza permite al ser humano conocer/estimar la relación de los elementos con él mismo, así como sus implicaciones en cuanto a nivel de riesgo se refiere. El establecimiento de estas relaciones semánticas -llamado cognición- es la única forma de definir el nivel de riesgo de manera absoluta y de generar una respuesta adecuada al mismo. No necesariamente proporcional, sino coherente con el riesgo al que se enfrenta. La investigación que presenta esta tesis describe el trabajo realizado para trasladar esta metodología de análisis y funcionamiento a la robótica. Este se ha centrado especialmente en la nevegación de los robots aéreos, diseñando e implementado procedimientos de inspiración humana para garantizar la seguridad de la misma. Para ello se han estudiado y evaluado los mecanismos de percepción, cognición y reacción humanas en relación al manejo de riesgos. También se ha analizado como los estímulos son capturados, procesados y transformados por condicionantes psicológicos, sociológicos y antropológicos de los seres humanos. Finalmente, también se ha analizado como estos factores motivan y descandenan las reacciones humanas frente a los peligros. Como resultado de este estudio, todos estos procesos, comportamientos y condicionantes de la conducta humana se han reproducido en un framework que se ha estructurado basadandose en factores análogos. Este emplea el conocimiento obtenido experimentalmente en forma de algoritmos, técnicas y estrategias, emulando el comportamiento humano en las mismas circunstancias. Diseñado, implementeado y validado tanto en simulación como con datos reales, este framework propone una manera innovadora -tanto en metodología como en procedimiento- de entender y reaccionar frente a las amenazas potenciales de una misión robótica. ABSTRACT Robotics has undergone a great revolution in the last decades. Nowadays this technology is able to perform really complex tasks with a high degree of accuracy and speed, however this is only true in precisely defined situations with fully controlled variables. Since the real world is dynamic, changing and unstructured, flexible and non context-dependent systems are required. The ability to understand situations, acknowledge changes and balance reactions is required by robots to successfully interact with their surroundings in a fully autonomous fashion. In fact, it is those very processes that define human interactions with the environment. Social relationships, driving or risk/incertitude management... in all these activities and systems, context understanding and adaptability are what allow human beings to survive: contrarily to the traditional robotics, people do not evaluate obstacles according to their position but according to the potential risk their presence imply. In this sense, human perception looks for information which goes beyond location, speed and dynamics (the usual data used in traditional obstacle avoidance systems). Specific features in the behaviour of a particular element allows the understanding of that element’s nature and therefore the comprehension of the risk posed by it. This process defines the second main difference between traditional obstacle avoidance systems and human behaviour: the ability to understand a situation/scenario allows to get to know the implications of the elements and their relationship with the observer. Establishing these semantic relationships -named cognition- is the only way to estimate the actual danger level of an element. Furthermore, only the application of this knowledge allows the generation of coherent, suitable and adjusted responses to deal with any risk faced. The research presented in this thesis summarizes the work done towards translating these human cognitive/reasoning procedures to the field of robotics. More specifically, the work done has been focused on employing human-based methodologies to enable aerial robots to navigate safely. To this effect, human perception, cognition and reaction processes concerning risk management have been experimentally studied; as well as the acquisition and processing of stimuli. How psychological, sociological and anthropological factors modify, balance and give shape to those stimuli has been researched. And finally, the way in which these factors motivate the human behaviour according to different mindsets and priorities has been established. This associative workflow has been reproduced by establishing an equivalent structure and defining similar factors and sources. Besides, all the knowledge obtained experimentally has been applied in the form of algorithms, techniques and strategies which emulate the analogous human behaviours. As a result, a framework capable of understanding and reacting in response to stimuli has been implemented and validated.
Resumo:
We asked 12 patients with left visual neglect to bisect the gap between two cylinders or to reach rapidly between them to a more distal target zone. Both tasks demanded a motor response but these responses were quite different in nature. The bisection response was a communicative act whereby the patient indicated the perceived midpoint. The reaching task carried no imperative to bisect the gap, only to maintain a safe distance from either cylinder while steering to the target zone. Optimal performance on either task could only be achieved by reference to the location of both cylinders. Our analysis focused upon the relative influence of the left and right cylinders on the lateral location of the response. In the bisection task, all neglect patients showed qualitatively the same asymmetry, with the left cylinder exerting less influence than the right. In the reaching task, the neglect group behaved like normal subjects, being influenced approximately equally by the two cylinders. This was true for all bar two of the patients, who showed clear neglect in both tasks. We conclude that the visuomotor processing underlying obstacle avoidance during reaching is preserved in most patients with left visual neglect. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to analyze the effects of dual tasking on obstacle crossing during walking by individuals with Alzheimer's disease (AD) and by healthy older people. Thirty four elderly individuals (16 healthy subjects and 18 individuals with AD) were recruited to participate in this study. Three AD individuals and one control participant were excluded due to exclusion criteria. The participants were instructed to walk barefoot at their own speed along an 8 m long pathway. Each participant performed five trials for each condition (unobstructed walking, unobstructed walking with dual tasking, and obstacle crossing during walking with dual tasking). The trials were completely randomized for each participant. The mid-pathway stride was measured in the unobstructed walking trials and the stride that occurred during the obstacle avoidance was measured in the trials that involved obstacle crossing. The behavior of the healthy elderly subjects and individuals with AD was similar for obstacle crossing during walking with dual tasking. Both groups used the posture first strategy to prioritize stability and showed decreased attention to executive tasking while walking. Additionally, AD had a strong influence on the modifications that are made by the elderly while walking under different walking conditions.
Resumo:
The purpose of the current study was to understand how visual information about an ongoing change in obstacle size is used during obstacle avoidance for both lead and trail limbs. Participants were required to walk in a dark room and to step over an obstacle edged with a special tape visible in the dark. The obstacle's dimensions were manipulated one step before obstacle clearance by increasing or decreasing its size. Two increasing and two decreasing obstacle conditions were combined with seven control static conditions. Results showed that information about the obstacle's size was acquired and used to modulate trail limb trajectory, but had no effect on lead limb trajectory. The adaptive step was influenced by the time available to acquire and process visual information. In conclusion, visual information about obstacle size acquired during lead limb crossing was used in a feedforward manner to modulate trail limb trajectory.
Resumo:
Numerous everyday tasks require the nervous system to program a prehensile movement towards a target object positioned in a cluttered environment. Adult humans are extremely proficient in avoiding contact with any non-target objects (obstacles) whilst carrying out such movements. A number of recent studies have highlighted the importance of considering the control of reach-to-grasp (prehension) movements in the presence of such obstacles. The current study was constructed with the aim of beginning the task of studying the relative impact on prehension as the position of obstacles is varied within the workspace. The experimental design ensured that the obstacles were positioned within the workspace in locations where they did not interfere physically with the path taken by the hand when no obstacle was present. In all positions, the presence of an obstacle caused the hand to slow down and the maximum grip aperture to decrease. Nonetheless, the effect of the obstacle varied according to its position within the workspace. In the situation where an obstacle was located a small distance to the right of a target object, the obstacle showed a large effect on maximum grip aperture but a relatively small effect on movement time. In contrast, an object positioned in front and to the right of a target object had a large effect on movement speed but a relatively small effect on maximum grip aperture. It was found that the presence of two obstacles caused the system to decrease further the movement speed and maximum grip aperture. The position of the two obstacles dictated the extent to which their presence affected the movement parameters. These results show that the antic ipated likelihood of a collision with potential obstacles affects the planning of movement duration and maximum grip aperture in prehension.
Resumo:
The purpose of this study was to investigate gait spatial parameters at the point of departure, with obstacle heights adjusted to individual body scale. Undergraduate student volunteers (M age=22.4 yr., SD=2.1; 6 women, 1 man) were asked to step once, then cross over an obstacle and stop. This behavior was video recorded to extract kinematic data. The obstacle heights corresponded to high (knee-height) and low obstacles (half the knee-height). Points of departure corresponded to far (length of the lower limb) and close (half the length of the lower limb). The close point of departure influenced the trailing foot's placement ahead of the obstacle as well as step length. The high obstacle influenced the trailing foot's toe clearance. An interaction between factors was observed for leading foot toe clearance. Results indicate that body scale affected the participants' locomotor behavior during the obstacle-avoidance task.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Crossing moving obstacles requires different space-time adjustments compared with stationary obstacles. Our aim was to investigate gait spatial and temporal parameters in the approach and crossing phases of a moving obstacle. We hypothesized that obstacle speed affects gait parameters, which allow us to distinguish locomotor strategies. Ten young adults walked and stepped over an obstacle that crossed their way perpendicularly, under three obstacle conditions: control-stationary obstacle, slow (1.07 m/s) and fast speed (1.71 m/s) moving obstacles. Gait parameters were different between obstacle conditions, especially on the slow speed. In the fast condition, the participants adopted predictive strategies during the approach and crossing phases. In the slow condition, they used an anticipatory strategy in both phases. We conclude that obstacle speed affects the locomotor behavior and strategies were distinct in the obstacle avoidance phases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)