963 resultados para object orientation processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1, vertical canonical targets were detected faster when they were tilted (incongruent) than when they were vertical (congruent). This search asymmetry was reversed for tilted canonical targets. The effect of canonical orientation was partially preserved when objects were high-pass filtered, but it was eliminated when they were low-pass filtered, rendering them as unfamiliar shapes (Experiment 2). The effect of canonical orientation was also eliminated by inverting the objects (Experiment 3) and in a patient with visual agnosia (Experiment 4). These results indicate that orientation search with familiar objects can be modulated by canonical orientation, and they indicate a top-down influence on orientation processing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The orientations of lines and edges are important in defining the structure of the visual environment, and observers can detect differences in line orientation within the first few hundred milliseconds of scene viewing. The present work is a psychophysical investigation of the mechanisms of early visual orientation-processing. In experiments with briefly presented displays of line elements, observers indicated whether all the elements were uniformly oriented or whether a uniquely oriented target was present among uniformly oriented nontargets. The minimum difference between nontarget and target orientations that was required for effective target-detection (the orientation increment threshold) varied little with the number of elements and their spatial density, but the percentage of correct responses in detection of a large orientation-difference increased with increasing element density. The differing variations with element density of thresholds and percent-correct scores may indicate the operation of more than one mechanism in early visual orientation-processIng. Reducing element length caused threshold to increase with increasing number of elements, showing that the effectiveness of rapid, spatially parallel orientation-processing depends on element length. Orientational anisotropy in line-target detection has been reported previously: a coarse periodic variation and some finer variations in orientation increment threshold with nontarget orientation have been found. In the present work, the prominence of the coarse variation in relation to finer variations decreased with increasing effective viewing duration, as if the operation of coarse orientation-processing mechanisms precedes the operation of finer ones. Orientational anisotropy was prominent even when observers lay horizontally and viewed displays by looking upwards through a black cylinder that excluded all possible visual references for orientation. So, gravitational and visual cues are not essential to the definition of an orientational reference frame for early vision, and such a reference can be well defined by retinocentric neural coding, awareness of body-axis orientation, or both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At what point in reading development does literacy impact object recognition and orientation processing? Is it specific to mirror images? To answer these questions, forty-six 5- to 7-year-old preschoolers and first graders performed two same–different tasks differing in the matching criterion-orientation-based versus shape-based (orientation independent)-on geometric shapes and letters. On orientation-based judgments, first graders out- performed preschoolers who had the strongest difficulty with mirrored pairs. On shape-based judgments, first graders were slower for mirrored than identical pairs, and even slower than preschoolers. This mirror cost emerged with letter knowledge. Only first graders presented worse shape-based judgments for mirrored and rotated pairs of reversible (e.g., b-d; b-q) than nonreversible (e.g., e-ә) letters, indicating readers’ difficulty in ignoring orientation contrasts relevant to letters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paradigm of computational vision hypothesizes that any visual function -- such as the recognition of your grandparent -- can be replicated by computational processing of the visual input. What are these computations that the brain performs? What should or could they be? Working on the latter question, this dissertation takes the statistical approach, where the suitable computations are attempted to be learned from the natural visual data itself. In particular, we empirically study the computational processing that emerges from the statistical properties of the visual world and the constraints and objectives specified for the learning process. This thesis consists of an introduction and 7 peer-reviewed publications, where the purpose of the introduction is to illustrate the area of study to a reader who is not familiar with computational vision research. In the scope of the introduction, we will briefly overview the primary challenges to visual processing, as well as recall some of the current opinions on visual processing in the early visual systems of animals. Next, we describe the methodology we have used in our research, and discuss the presented results. We have included some additional remarks, speculations and conclusions to this discussion that were not featured in the original publications. We present the following results in the publications of this thesis. First, we empirically demonstrate that luminance and contrast are strongly dependent in natural images, contradicting previous theories suggesting that luminance and contrast were processed separately in natural systems due to their independence in the visual data. Second, we show that simple cell -like receptive fields of the primary visual cortex can be learned in the nonlinear contrast domain by maximization of independence. Further, we provide first-time reports of the emergence of conjunctive (corner-detecting) and subtractive (opponent orientation) processing due to nonlinear projection pursuit with simple objective functions related to sparseness and response energy optimization. Then, we show that attempting to extract independent components of nonlinear histogram statistics of a biologically plausible representation leads to projection directions that appear to differentiate between visual contexts. Such processing might be applicable for priming, \ie the selection and tuning of later visual processing. We continue by showing that a different kind of thresholded low-frequency priming can be learned and used to make object detection faster with little loss in accuracy. Finally, we show that in a computational object detection setting, nonlinearly gain-controlled visual features of medium complexity can be acquired sequentially as images are encountered and discarded. We present two online algorithms to perform this feature selection, and propose the idea that for artificial systems, some processing mechanisms could be selectable from the environment without optimizing the mechanisms themselves. In summary, this thesis explores learning visual processing on several levels. The learning can be understood as interplay of input data, model structures, learning objectives, and estimation algorithms. The presented work adds to the growing body of evidence showing that statistical methods can be used to acquire intuitively meaningful visual processing mechanisms. The work also presents some predictions and ideas regarding biological visual processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of experiments, we tested category-specific activation in normal parti¬cipants using magnetoencephalography (MEG). Our experiments explored the temporal processing of objects, as MEG characterises neural activity on the order of milliseconds. Our experiments explored object-processing, including assessing the time-course of ob¬ject naming, early differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level, and late differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level. In addition to studies using normal participants, we also utilised MEG to explore category-specific processing in a patient with a deficit for living objects. Our findings support the cascade model of object naming (Humphreys et al., 1988). In addition, our findings using normal participants demonstrate early, category-specific perceptual differences. These findings are corroborated by our patient study. In our assessment of the time-course of category-specific effects as well as a separate analysis designed to measure semantic differences between living and nonliving objects, we found support for the sensory/motor model of object naming (Martin, 1998), in addition to support for the cascade model of object naming. Thus, object processing in normal participants appears to be served by a distributed network in the brain, and there are both perceptual and semantic differences between living and nonliving objects. A separate study assessing the influence of the level at which you are asked to identify an object on processing in the brain found evidence supporting the convergence zone hypothesis (Damasio, 1989). Taken together, these findings indicate the utility of MEG in exploring the time-course of object processing, isolating early perceptual and later semantic effects within the brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Refactoring focuses on improving the reusability, maintainability and performance of programs. However, the impact of refactoring on the security of a given program has received little attention. In this work, we focus on the design of object-oriented applications and use metrics to assess the impact of a number of standard refactoring rules on their security by evaluating the metrics before and after refactoring. This assessment tells us which refactoring steps can increase the security level of a given program from the point of view of potential information flow, allowing application designers to improve their system’s security at an early stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a hierarchical model for assessing an object-oriented program's security. Security is quantified using structural properties of the program code to identify the ways in which `classified' data values may be transferred between objects. The model begins with a set of low-level security metrics based on traditional design characteristics of object-oriented classes, such as data encapsulation, cohesion and coupling. These metrics are then used to characterise higher-level properties concerning the overall readability and writability of classified data throughout the program. In turn, these metrics are then mapped to well-known security design principles such as `assigning the least privilege' and `reducing the size of the attack surface'. Finally, the entire program's security is summarised as a single security index value. These metrics allow different versions of the same program, or different programs intended to perform the same task, to be compared for their relative security at a number of different abstraction levels. The model is validated via an experiment involving five open source Java programs, using a static analysis tool we have developed to automatically extract the security metrics from compiled Java bytecode.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a perception amongst some of those learning computer programming that the principles of object-oriented programming (where behaviour is often encapsulated across multiple class files) can be difficult to grasp, especially when taught through a traditional, didactic ‘talk-and-chalk’ method or in a lecture-based environment.
We propose a non-traditional teaching method, developed for a government funded teaching training project delivered by Queen’s University, we call it bigCode. In this scenario, learners are provided with many printed, poster-sized fragments of code (in this case either Java or C#). The learners sit on the floor in groups and assemble these fragments into the many classes which make-up an object-oriented program.
Early trials indicate that bigCode is an effective method for teaching object-orientation. The requirement to physically organise the code fragments imitates closely the thought processes of a good software developer when developing object-oriented code.
Furthermore, in addition to teaching the principles involved in object-orientation, bigCode is also an extremely useful technique for teaching learners the organisation and structure of individual classes in Java or C# (as well as the organisation of procedural code). The mechanics of organising fragments of code into complete, correct computer programs give the users first-hand practice of this important skill, and as a result they subsequently find it much easier to develop well-structured code on a computer.
Yet, open questions remain. Is bigCode successful only because we have unknowingly predominantly targeted kinesthetic learners? Is bigCode also an effective teaching approach for other forms of learners, such as visual learners? How scalable is bigCode: in its current form can it be used with large class sizes, or outside the classroom?

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Many patients with Posttraumatic Stress Disorder (PTSD) feel overwhelmed in situations with high levels of sensory input, as in crowded situations with complex sensory characteristics. These difficulties might be related to subtle sensory processing deficits similar to those that have been found for sounds in electrophysiological studies. METHOD: Visual processing was investigated with functional magnetic resonance imaging in trauma-exposed participants with (N = 18) and without PTSD (N = 21) employing a picture-viewing task. RESULTS: Activity observed in response to visual scenes was lower in PTSD participants 1) in the ventral stream of the visual system, including striate and extrastriate, inferior temporal, and entorhinal cortices, and 2) in dorsal and ventral attention systems (P < 0.05, FWE-corrected). These effects could not be explained by the emotional salience of the pictures. CONCLUSIONS: Visual processing was substantially altered in PTSD in the ventral visual stream, a component of the visual system thought to be responsible for object property processing. Together with previous reports of subtle auditory deficits in PTSD, these findings provide strong support for potentially important sensory processing deficits, whose origins may be related to dysfunctional attention processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Object-orientation supports software reuse via features such as abstraction, information hiding, polymorphism, inheritance and redefinition. However, while libraries of classes do exist, one of the challenges that still remains is to locate suitable classes and adapt them to meet the specific requirements of the software developer. Traditional approaches to library retrieval are text-based; it is therefore difficult for the developer to express their requirements in a precise and unambiguous manner. A more promising approach is specification-based retrieval, where library component interfaces and requirements are expressed using a formal specification language. In this case retrieval is based on matching formal specifications. In this paper we describe how existing approaches to specification matching can be extended to handle object-oriented components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Existing secure software development principles tend to focus on coding vulnerabilities, such as buffer or integer overflows, that apply to individual program statements, or issues associated with the run-time environment, such as component isolation. Here we instead consider software security from the perspective of potential information flow through a program’s object-oriented module structure. In particular, we define a set of quantifiable "security metrics" which allow programmers to quickly and easily assess the overall security of a given source code program or object-oriented design. Although measuring quality attributes of object-oriented programs for properties such as maintainability and performance has been well-covered in the literature, metrics which measure the quality of information security have received little attention. Moreover, existing securityrelevant metrics assess a system either at a very high level, i.e., the whole system, or at a fine level of granularity, i.e., with respect to individual statements. These approaches make it hard and expensive to recognise a secure system from an early stage of development. Instead, our security metrics are based on well-established compositional properties of object-oriented programs (i.e., data encapsulation, cohesion, coupling, composition, extensibility, inheritance and design size), combined with data flow analysis principles that trace potential information flow between high- and low-security system variables. We first define a set of metrics to assess the security quality of a given object-oriented system based on its design artifacts, allowing defects to be detected at an early stage of development. We then extend these metrics to produce a second set applicable to object-oriented program source code. The resulting metrics make it easy to compare the relative security of functionallyequivalent system designs or source code programs so that, for instance, the security of two different revisions of the same system can be compared directly. This capability is further used to study the impact of specific refactoring rules on system security more generally, at both the design and code levels. By measuring the relative security of various programs refactored using different rules, we thus provide guidelines for the safe application of refactoring steps to security-critical programs. Finally, to make it easy and efficient to measure a system design or program’s security, we have also developed a stand-alone software tool which automatically analyses and measures the security of UML designs and Java program code. The tool’s capabilities are demonstrated by applying it to a number of security-critical system designs and Java programs. Notably, the validity of the metrics is demonstrated empirically through measurements that confirm our expectation that program security typically improves as bugs are fixed, but worsens as new functionality is added.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes in detail our Security-Critical Program Analyser (SCPA). SCPA is used to assess the security of a given program based on its design or source code with regard to data flow-based metrics. Furthermore, it allows software developers to generate a UML-like class diagram of their program and annotate its confidential classes, methods and attributes. SCPA is also capable of producing Java source code for the generated design of a given program. This source code can then be compiled and the resulting Java bytecode program can be used by the tool to assess the program's overall security based on our security metrics.