955 resultados para nutrient addition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exotic species dominate many communities; however the functional significance of species’ biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is strong evidence to suggest that ground-water nitrate concentrations have increased in recent years and further increases are expected along portions of the central Gulf coast of Florida. Much of the nitrate enriched groundwater is discharged into surface waters through numerous freshwater springs that are characteristic of the area and the potential for eutrophication of their receiving waters is a legitimate concern. To test the potential effects of elevated nutrient concentrations on the periphyton community an in situ nutrient addition experiment was conducted in the spring-fed Chassahowitzka River, FL, USA, during the summer of 1999. Plastic tubes housing arrays of glass microscope slides were suspended in the stream. Periphyton colonizing the microscope slides was subjected to artificial increases in nitrogen, phosphorus or a combination of both. Slides from each tube were collected at 3- to 4- day intervals and the periphyton communities were measured for chlorophyll concentration. The addition of approximately 10 μg/L of phosphate above ambient concentrations significantly increased the amount of periphyton on artificial substrates relative to controls; the addition of approximately 100 μg/L of nitrate above ambient concentrations did not. The findings from this experiment implicated phosphorus, rather than nitrogen, as the nutrient that potentially limits periphyton growth in this system.(PDF contains 4 pages.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nutrient inputs into ecosystems of the tropical mountain rainforest region are projected to further increase in the next decades. To investigate whether important ecosystem services such as nutrient cycling and matter turnover in native forests and pasture ecosystems show different patterns of response, two nutrient addition experiments have been established: NUMEX in the forest and FERPAST at the pasture. Both ecosystems already responded 1.5 years after the start of nutrient application (N, P, NP, Ca). Interestingly, most nutrients remained in the respective systems. While the pasture grass was co-limited by N and P, most tree species responded to P addition. Soil microbial biomass in the forest litter layer increased after NP fertilization pointing to nutrient co-limitation. In pasture soils, microorganisms were neither limited by N nor P. The results support the hypothesis that multiple and temporally variable nutrient limitations can coexist in tropical ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A combination of physical and chemical measurements and biological indicators identified nutrient impacts throughout an Australian subtropical river estuary. This was a balance of sewage inputs in the lower river and agricultural inputs in the mid-upper river, the combined influence being greater in the wet season due to greater agricultural surface runoff. Field sampling in the region was conducted at 6 sites within the river, over 5 surveys to encapsulate both wet and dry seasonal effects. Parameters assessed were tissue nitrogen (N) contents and delta(15)N signatures of mangroves and macroalgae, phytoplankton nutrient addition bioassays, and standard physical and chemical variables. Strong spatial (within river) and temporal (seasonal) variability was observed in all parameters. Poorest water quality was detected in the middle (agricultural) region of the river in the wet season, attributable to large diffuse inputs in this region. Water quality towards the river mouth remained constant irrespective of season due to strong oceanic flushing. Mangrove and macroalgal tissue delta(15)N and %N proved a successful combination for discerning sewage and agricultural inputs. Elevated delta(15)N and %N represented sewage inputs, whereas low delta(15)N and elevated %N was indicative of agricultural inputs. Phytoplankton bioassays found the system to be primarily responsive to nutrient additions in the warmer wet season, with negligible responses observed in the cooler dry season. These results indicate that the Tweed River is sensitive to the different anthropogenic activities in its catchment and that each activity has a unique influence on receiving water quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the first systematic study of nutritional deficiencies of greater yam (Dioscorea alata). Yam plants (cv. 'Mahoa'a') were propagated from tuber discs and grown in nutrient solution, with nutrients supplied following a modified programmed nutrient-addition method. After an establishment period of four weeks, deficiencies of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), and molybdenum (Mo) were induced by omitting the relevant nutrient from the solution. Foliar symptoms were recorded photographically. Notably, deficiencies of the mobile macronutrients failed to induce senescence of oldest leaves, while vine growth and younger leaves were affected. Leaf blades of the main stem were sampled in sequence and analyzed chemically, providing the distribution of each nutrient from youngest to oldest leaves in both adequately supplied and deficient plants. The nutrient-concentration profiles, together with the visible symptoms, indicated that little remobilization of mobile macronutrients had occurred. For both macro- and micronutrients, young leaves gave the best separation of nutrient concentrations between well-nourished and deficient plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrass Thalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P > 96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increased T. testudinum cover by 50-75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambient T. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers. N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays of T. testudinum tissue N:P ratios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A field experiment was employed in Florida Bay investigating the response of seagrass epiphyte communities to nitrogen (N) and phosphorus (P) additions. While most of the variability in epiphyte community structure was related to uncontrolled temporal and spatial environmental heterogeneity, P additions increased the relative abundance of the red algae–cyanobacterial complex and green algae, with a concomitant decrease in diatoms. When N was added along with P, the observed changes to the diatoms and the red algae–cyanobacterial complex were in the same direction as P-only treatments, but the responses were decreased in magnitude. Within the diatom community, species relative abundances, species richness, and diversity responded weakly to nutrient addition. P additions produced changes in diatom community structure that were limited to summer and were stronger in eastern Florida Bay than in the western bay. These changes were consistent with well-established temporal and spatial patterns of P limitation. Despite the significant change in community structure resulting from P addition, diatom communities from the same site and time, regardless of nutrient treatment, remained more similar to one another than to the diatom communities subject to identical nutrient treatments from different sites and times. Overall, epiphyte communities exhibited responses to P addition that were most evident at the division level.