960 resultados para nuclear buds


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During acute and strenuous exercise, the enhanced formation of reactive oxygen species can induce damage to lipids, proteins, and nucleic acids. The aim of this study was to investigate the effect of an Ironman triathlon (3.8 km swim, 180 km cycle, 42 km run), as a prototype of ultra-endurance exercise, on DNA stability. As biomarkers of genomic instability, the number of micronuclei, nucleoplasmic bridges, and nuclear buds were measured within the cytokinesis-block micronucleus cytome assay in once-divided peripheral lymphocytes of 20 male triathletes. Blood samples were taken 2 days before, within 20 min after the race, and 5 and 19 days post-race. Overall, the number of micronuclei decreased (P < 0.05) after the race, remained at a low level until 5 days post-race, and declined further to 19 days post-race (P < 0.01). The frequency of nucleoplasmic bridges and nuclear buds did not change immediately after the triathlon. The number of nucleoplasmic bridge declined from 2 days pre-race to 19 days post-exercise (P < 0.05). The frequency of nuclear buds increased after the triathlon, peaking 5 days post-race (P < 0.01) and decreased to basic levels 19 days after the race (P < 0.01). The results suggest that an Ironman triathlon does not cause long-lasting DNA damage in well-trained athletes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Genética), Universidade de Lisboa, Faculdade de Ciências, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The trifluralin is an agent that promotes a cellular damage due to its direct action on the microtubules. This action leads to a decontrol in the cellular division, bringing about polyploid cells. In this work, we show the evidences that the exceeding genetical material of theses polyploidizated cells tends to be eliminated from the nucleus in the form of micronucleus. Our analyses prove this fact, both by the presence of a number of cells carrying micronucleus, and by the evidences of the elimination of the exceeding material itself, after exposition of the Allium cepa root tips tested with several concentration of trifluralin herbicide. It was noticed that the residual concentration induced a number of polyploid cells, micronuclei and mini cells. Inferences about the implications of the elimination of genetic material from micronuclei, such as cell viability and apoptosis, are also presented. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/Aim: Formaldehyde is classified as carcinogenic to humans, making it a major concern, particularly in occupational settings. Fat-soluble vitamins, such as vitamins A, D, and E, are documented as antigenotoxic and antimutagenic and also correlate with the cell antioxidant potential. This study investigates the influence of these vitamins on genotoxicity biomarkers of formaldehyde-exposed hospital workers. Methods: The target population were hospital workers exposed to formaldehyde (n = 55). Controls were nonexposed individuals (n = 80). The most used genotoxicity biomarkers were the cytokinesis-block micronucleus assay for lymphocytes and the micronucleus test for exfoliated buccal cells. Vitamins A and E were determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and vitamin D receptor (VDR) polymorphisms by real-time PCR. Results: Significant correlations were found between genotoxicity biomarkers and between vitamins A and E in controls. Multiple regression showed that vitamin A was significantly associated with a higher mean of nucleoplasmic bridges (p < 0.001), and vitamin E was significantly associated with a decreased frequency of nuclear buds (p = 0.045) in the exposed group. No effect of vitamin D was observed. The VDRBsmI TT genotype carriers presented higher means of all the genotoxicity biomarkers; however, we found no significant associations. Conclusions: The study suggests that vitamin levels may modulate direct signs of genotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.