999 resultados para np x chart


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artigo considera um gráfico np x proposto por Wu et al. (2009) para controle de média de processo como uma alternativa ao uso do gráfico de. O que distingue do gráfico de controle np x é o fato das unidades amostrais serem classificadas como unidades de primeiro ou de segunda classe de acordo com seus limites discriminantes. O gráfico tradicional np é um caso particular do gráfico np x quando os limites discriminantes coincidem com os limites de especificação e unidade de primeira (segunda) classe é um item conforme (não conforme). Estendendo o trabalho de Reynolds Junior, Arnold e Baik (1996), consideramos que a média de processo oscila mesmo na ausência de alguma causa especial. As propriedades de Cadeia de Markov foram adotadas para avaliar o desempenho do gráfico np x no monitoramento de média de processos que oscila. de modo geral, o gráfico np x requer amostras duas vezes maior para superar desempenho do gráfico (enquanto que o gráfico tradicional np necessita tamanho de amostras cinco ou seis vezes maior).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to present an economical design of an X chart for a short-run production. The process mean starts equal to mu(0) (in-control, State I) and in a random time it shifts to mu(1) > mu(0) (out-of-control, State II). The monitoring procedure consists of inspecting a single item at every m produced ones. If the measurement of the quality characteristic does not meet the control limits, the process is stopped, adjusted, and additional (r - 1) items are inspected retrospectively. The probabilistic model was developed considering only shifts in the process mean. A direct search technique is applied to find the optimum parameters which minimizes the expected cost function. Numerical examples illustrate the proposed procedure. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive X̄ charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an economic model for X̄ control charts having all design parameters varying in an adaptive way, that is, in real time considering current sample information. In the proposed model, each of the design parameters can assume two values as a function of the most recent process information. The cost function is derived and it provides a device for optimal selection of the design parameters. Through a numerical example one can foresee the savings that the developed model possibly provides. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VSS X- chart is known to perform better than the traditional X- control chart in detecting small to moderate mean shifts in the process. Many researchers have used this chart in order to detect a process mean shift under the assumption of known parameters. However, in practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS X- control chart when the process parameters are estimated and we compare them in the case where the process parameters are assumed known. We draw the conclusion that these performances are quite different when the shift and the number of samples used during the phase I are small. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VSS X chart, dedicated to the detection of small to moderate mean shifts in the process, has been investigated by several researchers under the assumption of known process parameters. In practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS chart when the process parameters are estimated, we compare them in the case where the process parameters are assumed known and we propose specific optimal control chart parameters taking the number of Phase I samples into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose the Double Sampling X̄ control chart for monitoring processes in which the observations follow a first order autoregressive model. We consider sampling intervals that are sufficiently long to meet the rational subgroup concept. The Double Sampling X̄ chart is substantially more efficient than the Shewhart chart and the Variable Sample Size chart. To study the properties of these charts we derived closed-form expressions for the average run length (ARL) taking into account the within-subgroup correlation. Numerical results show that this correlation has a significant impact on the chart properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A standard X chart for controlling a process takes regular individual observations, for instance every half hour. This article proposes a modification of the X chart that allows one to take supplementary samples. The supplementary sample is taken (and the (X) over bar and R values computed) when the current value of X falls outside the control limits. With the supplementary sample, the signal of out-of-control is given by an (X) over bar value outside the (X) over bar chart's control limits or an R value outside the R chart's control limit. The proposed chart is designed to hold the supplementary sample frequency, during the in-control period, as low as 5% or less. In this context, the practitioner might prefer to verify an out-of-control condition by simply comparing the (X) over bar and R values with the control limits. In other words, without plotting the (X) over bar and R points. The X chart with supplementary samples has two major advantages when compared with the standard (X) over bar and A charts: (a) the user will be plotting X values instead of (X) over bar and R values; (b) the shifts in the process mean and/or changes in the process variance are detected faster.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours. This article considers the properties of the X̄ chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) X̄ chart are obtained using Markov chains. The VSS X̄ chart is substantially quicker than the traditional X̄ chart in detecting moderate shifts in the process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A standard X̄ chart for controlling the process mean takes samples of size n0 at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard X chart that allows one to take additional samples, bigger than n0, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costa (1997) we shortly call the proposed X chart as VSSIFT X chart where VSSIFT means variable sample size and sampling intervals with fixed times. The X chart with the VSSIFT feature is easier to be administered than a standard VSSI X chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable. Copyright © 1998 by Marcel Dekker, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent studies have shown that the X̄ chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both the X̄ and R charts. A Markov chain model is used to determine the properties of the joint X and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint X̄ and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Varying the parameters of the X̄ chart has been explored extensively in recent years. In this paper, we extend the study of the X̄ chart with variable parameters to include variable action limits. The action limits establish whether the control should be relaxed or not. When the X̄ falls near the target, the control is relaxed so that there will be more time before the next sample and/or the next sample will be smaller than usual. When the X̄ falls far from the target but not in the action region, the control is tightened so that there is less time before the next sample and/or the next sample will be larger than usual. The goal is to draw the action limits wider than usual when the control is relaxed and narrower than usual when the control is tightened. This new feature then makes the X̄ chart more powerful than the CUSUM scheme in detecting shifts in the process mean.