963 resultados para normally dispersive solid bulk medium
Resumo:
We experimentally demonstrate that high-power femtosecond pulses can be compressed during the nonlinear propagation in the normally dispersive solid bulk medium. The self-compression behavior was detailedly investigated under a variety of experimental conditions, and the temporal and spectral characteristics of resulted pulses were found to be significantly affected by the input pulse intensity, with higher intensity corresponding to shorter compressed pulses. By passing through a piece of BK7 glass, a self-compression from 50 to 20 fs was achieved, with a compression factor of about 2.5. However, the output pulse was observed to be split into two peaks when the input intensity is high enough to generate supercontinuum and conical emission. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
实验研究了正色散固体介质中的激光脉冲自压缩现象,证明了无需任何外加色散补偿情况下,固体透明介质中的自聚焦传输过程可使高功率飞秒激光脉冲实现时域脉冲压缩,并详细研究了输出脉冲的时域和频域特性随入射脉冲强度的演化规律.实验结果表明脉冲自压缩量随入射脉冲强度的增加呈递增趋势,然而当入射光强增大到足以引起超连续谱及锥形辐射产生时,脉冲时域形状会发生分裂.此外还发现发散光束入射情况下同样可以观察到脉冲自压缩现象.
Resumo:
A rapid liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-residue method for the simultaneous quantitation and identification of sixteen synthetic growth promoters and bisphenol A in bovine milk has been developed and validated. Sample preparation was straightforward, efficient and economically advantageous. Milk was extracted with acetonitrile followed by phase separation with NaCl. After centrifugation, the extract was purified by dispersive solid-phase extraction with C18 sorbent material. The compounds were analysed by reversed-phase LC-MS/MS using both positive and negative ionization and operated in multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from each of the chosen precursor ions for unambiguous confirmation. Total chromatographic run time was less than 10 min for each sample. The method was validated at a level of 1 mu g L-1. A wide variety of deuterated internal standards were used to improve method performance. The accuracy and precision of the method were satisfactory for all analytes. The confirmative quantitative liquid chromatographic tandem mass spectrometric (LC-MS/MS) method was validated according to Commission Decision 2002/657/EC. The decision limit (CC alpha) and the detection capability (CC beta) were found to be below the chosen validation level of 1 mu g L-1 for all compounds. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this study, we sought to assess the applicability of GC–MS/MS for the identification and quantification of 36 pesticides in strawberry from integrated pest management (IPM) and organic farming (OF). Citrate versions of QuEChERS (quick, easy, cheap, effective, rugged and safe) using dispersive solid-phase extraction (d-SPE) and disposable pipette extraction (DPX) for cleanup were compared for pesticide extraction. For cleanup, a combination of MgSO4, primary secondary amine and C18 was used for both the versions. Significant differences were observed in recovery results between the two sample preparation versions (DPX and d-SPE). Overall, 86% of the pesticides achieved recoveries (three spiking levels 10, 50 and 200 µg/kg) in the range of 70–120%, with <13% RSD. The matrix effects were also evaluated in both the versions and in strawberries from different crop types. Although not evidencing significant differences between the two methodologies were observed, however, the DPX cleanup proved to be a faster technique and easy to execute. The results indicate that QuEChERS with d-SPE and DPX and GC–MS/MS analysis achieved reliable quantification and identification of 36 pesticide residues in strawberries from OF and IPM.
Resumo:
This paper reports on the development and optimization of a modified Quick, Easy, Cheap Effective, Rugged and Safe (QuEChERS) based extraction technique coupled with a clean-up dispersive-solid phase extraction (dSPE) as a new, reliable and powerful strategy to enhance the extraction efficiency of free low molecular-weight polyphenols in selected species of dietary vegetables. The process involves two simple steps. First, the homogenized samples are extracted and partitioned using an organic solvent and salt solution. Then, the supernatant is further extracted and cleaned using a dSPE technique. Final clear extracts of vegetables were concentrated under vacuum to near dryness and taken up into initial mobile phase (0.1% formic acid and 20% methanol). The separation and quantification of free low molecular weight polyphenols from the vegetable extracts was achieved by ultrahigh pressure liquid chromatography (UHPLC) equipped with a phodiode array (PDA) detection system and a Trifunctional High Strength Silica capillary analytical column (HSS T3), specially designed for polar compounds. The performance of the method was assessed by studying the selectivity, linear dynamic range, the limit of detection (LOD) and limit of quantification (LOQ), precision, trueness, and matrix effects. The validation parameters of the method showed satisfactory figures of merit. Good linearity (View the MathML sourceRvalues2>0.954; (+)-catechin in carrot samples) was achieved at the studied concentration range. Reproducibility was better than 3%. Consistent recoveries of polyphenols ranging from 78.4 to 99.9% were observed when all target vegetable samples were spiked at two concentration levels, with relative standard deviations (RSDs, n = 5) lower than 2.9%. The LODs and the LOQs ranged from 0.005 μg mL−1 (trans-resveratrol, carrot) to 0.62 μg mL−1 (syringic acid, garlic) and from 0.016 μg mL−1 (trans-resveratrol, carrot) to 0.87 μg mL−1 ((+)-catechin, carrot) depending on the compound. The method was applied for studying the occurrence of free low molecular weight polyphenols in eight selected dietary vegetables (broccoli, tomato, carrot, garlic, onion, red pepper, green pepper and beetroot), providing a valuable and promising tool for food quality evaluation.
Resumo:
We propose a simple method for passive nonlinear optical pulse shaping that utilizes pulse prechirping and nonlinear propagation in a normally dispersive nonlinear fiber to generate various temporal waveforms of practical interest from conventional laser pulses.
Resumo:
We propose a novel approach to characterize the parabolically-shaped pulses that can be generated from more conventional pulses via nonlinear propagation in cascaded sections of commercially available normally dispersive (ND) fibers. The impact of the initial pulse chirp on the passive pulse reshaping is examined. We furthermore demonstrate that the combination of pulse pre-chirping and propagation in a single ND fiber yields a simple, passive method for generating various temporal waveforms of practical interest.
Resumo:
We determine through numerical modelling the conditions for the generation of triangular-shaped optical pulses in a nonlinear, normally dispersive (ND) fibre and experimentally demonstrate triangular pulse formation in conventional ND fibre.
Resumo:
In this scheme, nonlinearity and dispersion in the NDF lead to various reshaping processes of an initial, conventional pulse according to the chirping value and power level at the input of the fibre. In particular, we have observed that triangular-shaped pulses can be generated for sufficiently high energies and a positive initial chirp parameter. In our experiments, 2.8 ps-FWHM, transform-limited pulses generated from a mode-locked fibre laser source at a repetition rate of 1.25 GHz were pre-chirped by propagating the pulses through different lengths of standard mono-mode fibre. The chirped pulses were then amplified to different power levels before being launched into a 2.3 km section of True Wave fibre (TWF). The corresponding numerically calculated pulse temporal intensity profile and numerical and experimental second-harmonic generation frequency-resolved optical gating (SHG FROG) spectrograms were also derived. In conclusion, we have presented numerical modelling results which show the system design parameters required for the generation of triangular-shaped pulses in a nonlinear NDF, and experimentally demonstrated triangular pulse shaping in conventional NDF.
Resumo:
We report two recent studies dealing with the evolution of parabolic pulses in normally dispersive fibres. On the one hand, the nonlinear reshaping from a Gaussian intensity profile towards the asymptotic parabolic shape is experimentally investigated in a Raman amplifier. On the other hand, the significant impact of the fourth order dispersion on a passive propagation is theoretically discussed: we numerically demonstrate flat-top, coherent supercontinuum generation in an all-normal dispersion-flattened photonic crystal fiber. This shape is associated to a strong reshaping of the temporal profile what becomes triangular.
Resumo:
A detailed experimental characterization of the transition process of an initially Gaussian pulse to the asymptotic self-similar parabolic solution in optical fibre amplifiers operating in the normal dispersion regime is performed.
Resumo:
A detailed experimental characterization of the transition process of an initially Gaussian pulse to the asymptotic self-similar parabolic solution in optical fibre amplifiers operating in the normal dispersion regime is performed.
Resumo:
We report two recent studies dealing with the evolution of parabolic pulses in normally dispersive fibres. On the one hand, the nonlinear reshaping from a Gaussian intensity profile towards the asymptotic parabolic shape is experimentally investigated in a Raman amplifier. On the other hand, the significant impact of the fourth order dispersion on a passive propagation is theoretically discussed: we numerically demonstrate flat-top, coherent supercontinuum generation in an all-normal dispersion-flattened photonic crystal fiber. This shape is associated to a strong reshaping of the temporal profile what becomes triangular.
Resumo:
We propose a simple method for passive nonlinear optical pulse shaping that utilizes pulse prechirping and nonlinear propagation in a normally dispersive nonlinear fiber to generate various temporal waveforms of practical interest from conventional laser pulses.