935 resultados para nondegenerate four-wave mixing (FWM)
Resumo:
We propose a configuration for suppressing pumps in a broad- and flat-hand tunable nondegenerate four-wave mixing (FWM) wavelength converter. The signal and pumps are coupled into a highly nonlinear photonic crystal fiber symmetrical Sagnac loop. After the FWM wavelength conversion in the loop, the idler is separated from the pumps without a filter. In our experiment, a flat wavelength conversion bandwidth of 36 rim, conversion efficiency of-11 dB., pump-to-signal suppression ratio of 48 dB, and idler-to-pump suppression ratio of 15 dB are achieved.
Resumo:
We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We did a numerical investigation of the propagation of short light pulses in the region of 1.55 mu m and the conversion efficiency (CE) for the four wave mixing generation (FWM) of ordinary and dispersion decreasing fibers for use in wavelength division multiplexing (WDM) systems, Our simulations studies three different profiles, linear, hyperbolic. and constant, One conclude that for all the profiles there is decrease of the conversion efficiency with the increase in the channel separation. The hyperbolic profile present a higher efficiency of around 1000 above in magnitude compared with the others profiles at 0.2 nm of channel separation. We calculate the conversion efficiency versus the fiber length for the three profiles. The conversion efficiency for the hyperbolic profile is higher when compared to the constant and linear profiles. The other interesting point of the hyperbolic profile is that the increase of the CE in the beginning of the fiber does not show my oscillation in the CE value (log eta), which was observed for the constant and linear profiles. For all the profiles there is an increase of the conversion efficiency with the increase of the pump power. The compression factor C-i for the generated FWM signal at omega(3) was measured along the DDF's and the constant profile fibers. One can conclude that with the use of decreasing dispersion profile (DDF) fibers one can have a control of the (CE) conversion efficiency and the compression factor of the four wave mixing (FWM) generation in WDM systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigate the ultrafast four-wave mixing (FWM) with two-color few-cycle ultrashort pulses propagating in a two-level polar molecule medium. It is found that the enhancement of FWM can be achieved even for low intensity pulses due to the effects of permanent dipole moments (PDM) in polar molecules. Moreover, the conversion efficiency of FWM can be controlled by the carrier-envelope phases (CEP) of two ultrashort pulses. (c) 2006 Optical Society of America
Resumo:
We analyse a four-wave mixing (FWM) scheme in a five-level atomic system in which double-dark resonances are present. It is found that the enhancement of FWM in both electromagnetically induced transparency (EIT) windows can be obtained even without the condition of multiphoton resonance. Moreover, the conversion efficiency of FWM in one EIT window can be much larger than that in the other due to the presence of interacting dark resonances.
Resumo:
A five-level tripod scheme is proposed for obtaining a high efficiency four-wave-mixing (FWM) process. The existence of double-dark resonances leads to a strong modification of the absorption and dispersion properties against a pump wave at two transparency windows. We show that both of them can be used to open the four-wave mixing channel and produce efficient mixing waves. In particular, higher FWM efficiency is always produced at the transparent window corresponding to the relatively weak-coupling field. By manipulating the intensity of the two coupling fields, the conversion efficiency of FWM can be controlled.
Resumo:
This thesis describes the theoretical solution and experimental verification of phase conjugation via nondegenerate four-wave mixing in resonant media. The theoretical work models the resonant medium as a two-level atomic system with the lower state of the system being the ground state of the atom. Working initially with an ensemble of stationary atoms, the density matrix equations are solved by third-order perturbation theory in the presence of the four applied electro-magnetic fields which are assumed to be nearly resonant with the atomic transition. Two of the applied fields are assumed to be non-depleted counterpropagating pump waves while the third wave is an incident signal wave. The fourth wave is the phase conjugate wave which is generated by the interaction of the three previous waves with the nonlinear medium. The solution of the density matrix equations gives the local polarization of the atom. The polarization is used in Maxwell's equations as a source term to solve for the propagation and generation of the signal wave and phase conjugate wave through the nonlinear medium. Studying the dependence of the phase conjugate signal on the various parameters such as frequency, we show how an ultrahigh-Q isotropically sensitive optical filter can be constructed using the phase conjugation process.
In many cases the pump waves may saturate the resonant medium so we also present another solution to the density matrix equations which is correct to all orders in the amplitude of the pump waves since the third-order solution is correct only to first-order in each of the field amplitudes. In the saturated regime, we predict several new phenomena associated with degenerate four-wave mixing and also describe the ac Stark effect and how it modifies the frequency response of the filtering process. We also show how a narrow bandwidth optical filter with an efficiency greater than unity can be constructed.
In many atomic systems the atoms are moving at significant velocities such that the Doppler linewidth of the system is larger than the homogeneous linewidth. The latter linewidth dominates the response of the ensemble of stationary atoms. To better understand this case the density matrix equations are solved to third-order by perturbation theory for an atom of velocity v. The solution for the polarization is then integrated over the velocity distribution of the macroscopic system which is assumed to be a gaussian distribution of velocities since that is an excellent model of many real systems. Using the Doppler broadened system, we explain how a tunable optical filter can be constructed whose bandwidth is limited by the homogeneous linewidth of the atom while the tuning range of the filter extends over the entire Doppler profile.
Since it is a resonant system, sodium vapor is used as the nonlinear medium in our experiments. The relevant properties of sodium are discussed in great detail. In particular, the wavefunctions of the 3S and 3P states are analyzed and a discussion of how the 3S-3P transition models a two-level system is given.
Using sodium as the nonlinear medium we demonstrate an ultrahigh-Q optical filter using phase conjugation via nondegenerate four-wave mixing as the filtering process. The filter has a FWHM bandwidth of 41 MHz and a maximum efficiency of 4 x 10-3. However, our theoretical work and other experimental work with sodium suggest that an efficient filter with both gain and a narrower bandwidth should be quite feasible.
Resumo:
We numerically investigate the main constrains for high efficiency wavelength conversion of differential phase-shift keying (DPSK) signals based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF). Using multi-tone pump phase modulation techniques, high efficiency wavelength conversion of DPSK signals is achieved with the stimulated Brillouin scattering (SBS) effects effectively suppressed. Our analysis shows that there is a compromise between conversion efficiency and converted idler degradation. By optimizing the pump phase modulation configuration, the converted DPSK idler's degradation can be dramatically decreased through balancing SBS suppression and pump phase modulation degradation. Our simulation results also show that these multi-tone pump phase modulation techniques are more appropriate for the future high bit rate systems.
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Within the one-dimensional tight-binding model;rnd chi-3 approximation, we have calculated four-wave-mixing (FWM) signals for a semiconductor superlattice in the presence of both static and high-frequency electric fields. When the exciton effect is negligible, the time-periodic field dynamically delocalizes the otherwise localized Wannier-Stark states, and accordingly quasienergy band structures are formed, and manifest in the FWM spectra as a series of equally separated continua. The width of each continuum is proportional to the joint width of the valence and conduction minibands and is independent of the Wannier-Stark index. The realistic homogeneous broadening blurs the continua into broad peaks, whose line shapes, far from the Lorentzian, vary with the delay time in the FWM spectra. The swinging range of the peaks is just the quasienergy bandwidth. The dynamical delocalization (DDL) also induces significant FWM signals well beyond the excitation energy window. When the Coulomb interaction is taken into account, the unequal spacing between the excitonic Wannier-Stark levels weakens the DDL effect, and the FWM spectrum is transformed into groups of discrete lines. Strikingly, the groups are evenly spaced by the ac field frequency, reflecting the characteristic of the quasienergy states. The homogeneous broadening again smears out the line structures, leading to the excitonic FWM spectra quite similar to those without the exciton effect. However, all these features predicted by the dynamical theory do not appear in a recent experiment [Phys. Rev. Lett. 79, 301 (1997)], in which, by using the static approximation the observed Wannier-Stark ladder with delay-time-dependent spacing in the FWM spectra is attributed to a temporally periodic dipole field, produced by the Bloch oscillation of electrons in real space. The contradiction between the dynamical theory and the experiments is discussed. In addition, our calculation indicates that the dynamical localization coherently enhances the time-integrated FWM signals. The feasibility of using such a technique to study the dynamical localization phenomena is shown. [S0163-1829(99)10607-6].
Resumo:
We study the four-wave mixing (FWM) in an opening five-level system with two dressing fields. There are three kinds of doubly dressing mechanisms (parallel cascade, sequential cascade, and nested cascade) in the system for doubly dressed four-wave mixing. These mechanisms reflect different correlations between two dressing fields and different effects of two dressing fields to the FWM. Investigation of these mechanisms is helpful to understand the generated high-order nonlinear optical signal dressed by multi-fields.
Numerical analysis of four-wave-mixing based multichannel wavelength conversion techniques in fibers
Resumo:
We numerically investigate four-wave-mixing (FWM) based multichannel wavelength conversion for amplitude-modulated signals, phase-modulated signals, together with mixed amplitude and phase modulated signals. This paper also discusses the influence of stimulated Brillouin scattering (SBS) effects on high-efficiency FWM-based wavelength conversion applications. Our simulation results show that DPSK signals are more suitable for FWM-based multichannel wavelength conversion because the OOK signals will suffer from the inevitable datapattern-dependent pump depletion. In future applications, when the modulation format is partially upgraded from OOK to DPSK, the influence of OOK signals on the updated DPSK signals must be considered when using multichannel wavelength conversion. This influence becomes severe with the increase of OOK channel number. It can be concluded that DPSK signals are more appropriate for both transmission and multichannel wavelength conversion,especially in long haul and high bit-rate system.
Resumo:
Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.
Resumo:
Non-linearities in semiconductor optical amplifiers have been used to demonstrate a wide range of functions applicable to future optical networks such as wavelength conversion and optical switching. Four-wave-mixing effects in SOAs have been studied extensively in many laboratories with respect to the underlying physical processes and system applications. At BT Labs an optimization of SOAs for FWM has been achieved by altering the device active layer composition and by increasing the device length. We will review recent progress at BT Labs in dispersion compensation, wavelength conversion and demultiplexing at bit-rates of 40 Gbit/s using these devices.
Resumo:
Non-linearities in semiconductor optical amplifiers have been used to demonstrate a wide range of functions applicable to future optical networks such as wavelength conversion and optical switching. Four-wave-mixing effects in SOAs have been studied extensively in many laboratories with respect to the underlying physical processes and system applications. At BT Labs an optimisation of SOAs for FWM has been achieved by altering the device active layer composition and by increasing the device length. We will review recent progress at BT Labs in dispersion compensation, wavelength conversion and demultiplexing at bit-rates of 40Gbit/s using these devices.