803 resultados para non-stationary panel data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objetive of this research is to evaluate the long term relationship between energy consumption and GDP for some Latin American countries in the period 1980-2009 -- The estimation has been done through the non-stationary panel approach, using the production function in order to control other sources of GDP variation, such as capital and labor -- In addition to this, a panel unit root tests are used in order to identify the non-stationarity of these variables, followed by the application of panel cointegration test proposed by Pedroni (2004) to avoid a spurious regression (Entorf, 1997; Kao, 1999)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A problem with use of the geostatistical Kriging error for optimal sampling design is that the design does not adapt locally to the character of spatial variation. This is because a stationary variogram or covariance function is a parameter of the geostatistical model. The objective of this paper was to investigate the utility of non-stationary geostatistics for optimal sampling design. First, a contour data set of Wiltshire was split into 25 equal sub-regions and a local variogram was predicted for each. These variograms were fitted with models and the coefficients used in Kriging to select optimal sample spacings for each sub-region. Large differences existed between the designs for the whole region (based on the global variogram) and for the sub-regions (based on the local variograms). Second, a segmentation approach was used to divide a digital terrain model into separate segments. Segment-based variograms were predicted and fitted with models. Optimal sample spacings were then determined for the whole region and for the sub-regions. It was demonstrated that the global design was inadequate, grossly over-sampling some segments while under-sampling others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of non-listed real estate funds over the last several years has contributed towards establishing this sector as a major investment vehicle for gaining exposure to commercial real estate. Academic research has not kept up with this development, however, as there are still only a few published studies on non-listed real estate funds. This paper aims to identify the factors driving the total return over a seven-year period. Influential factors tested in our analysis include the weighted underlying direct property returns in each country and sector as well as fund size, investment style gearing and the distribution yield. Furthermore, we analyze the interaction of non-listed real estate funds with the performance of the overall economy and that of competing asset classes and found that lagged GDP growth and stock market returns as well as contemporaneous government bond rates are significant and positive predictors of annual fund performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Housing is an important component of wealth for a typical household in many countries. The objective of this paper is to investigate the effect of real-estate price variation on welfare, trying to close a gap between the welfare literature in Brazil and that in the U.S., the U.K., and other developed countries. Our first motivation relates to the fact that real estate is probably more important here than elsewhere as a proportion of wealth, which potentially makes the impact of a price change bigger here. Our second motivation relates to the fact that real-estate prices boomed in Brazil in the last five years. Prime real estate in Rio de Janeiro and São Paulo have tripled in value in that period, and a smaller but generalized increase has been observed throughout the country. Third, we have also seen a recent consumption boom in Brazil in the last five years. Indeed, the recent rise of some of the poor to middle-income status is well documented not only for Brazil but for other emerging countries as well. Regarding consumption and real-estate prices in Brazil, one cannot imply causality from correlation, but one can do causal inference with an appropriate structural model and proper inference, or with a proper inference in a reduced-form setup. Our last motivation is related to the complete absence of studies of this kind in Brazil, which makes ours a pioneering study. We assemble a panel-data set for the determinants of non-durable consumption growth by Brazilian states, merging the techniques and ideas in Campbell and Cocco (2007) and in Case, Quigley and Shiller (2005). With appropriate controls, and panel-data methods, we investigate whether house-price variation has a positive effect on non-durable consumption. The results show a non-negligible significant impact of the change in the price of real estate on welfare consumption), although smaller then what Campbell and Cocco have found. Our findings support the view that the channel through which house prices affect consumption is a financial one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: The Kalman-Bucy method is here analized and applied to the solution of a specific filtering problem to increase the signal message/noise ratio. The method is a time domain treatment of a geophysical process classified as stochastic non-stationary. The derivation of the estimator is based on the relationship between the Kalman-Bucy and Wiener approaches for linear systems. In the present work we emphasize the criterion used, the model with apriori information, the algorithm, and the quality as related to the results. The examples are for the ideal well-log response, and the results indicate that this method can be used on a variety of geophysical data treatments, and its study clearly offers a proper insight into modeling and processing of geophysical problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnostics is based on the characterization of mechanical system condition and allows early detection of a possible fault. Signal processing is an approach widely used in diagnostics, since it allows directly characterizing the state of the system. Several types of advanced signal processing techniques have been proposed in the last decades and added to more conventional ones. Seldom, these techniques are able to consider non-stationary operations. Diagnostics of roller bearings is not an exception of this framework. In this paper, a new vibration signal processing tool, able to perform roller bearing diagnostics in whatever working condition and noise level, is developed on the basis of two data-adaptive techniques as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED), coupled by means of the mathematics related to the Hilbert transform. The effectiveness of the new signal processing tool is proven by means of experimental data measured in a test-rig that employs high power industrial size components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document examines the time-series properties of the wage differentials that arise between the public and private sector in Colombia during the sample period 1984 to 2005. We Find conflicting results in unit-root and stationary tests when looking at wage differentials at an aggregate level (such as for men, women or both). However, when we analyse wage differentials at higher levels of disaggregation, treat them jointly as a panel of data, and allow for the presence of potential cross section dependence, there is more supportive evidence for the view that wage differentials are stationary. This implies that although wage differentials do exist, they have not been consistently increasing (or decreasing) over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle aim of this research is to elucidate the factors driving the total rate of return of non-listed funds using a panel data analytical framework. In line with previous results, we find that core funds exhibit lower yet more stable returns than value-added and, in particular, opportunistic funds, both cross-sectionally and over time. After taking into account overall market exposure, as measured by weighted market returns, the excess returns of value-added and opportunity funds are likely to stem from: high leverage, high exposure to development, active asset management and investment in specialized property sectors. A random effects estimation of the panel data model largely confirms the findings obtained from the fixed effects model. Again, the country and sector property effect shows the strongest significance in explaining total returns. The stock market variable is negative which hints at switching effects between competing asset classes. For opportunity funds, on average, the returns attributable to gearing are three times higher than those for value added funds and over five times higher than for core funds. Overall, there is relatively strong evidence indicating that country and sector allocation, style, gearing and fund size combinations impact on the performance of unlisted real estate funds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society