1000 resultados para nifB point-mutated
Resumo:
Fibroblast growth factor-2 (FGF-2) is a multifunctional polypeptide that affects many cellular functions and phenomena. The wild-type recombinant human fibroblast growth factor rhFGF-2(W) and the mutant C78SC96S rhFGF-2(M) were expressed in Escherichia coli and their products were purified. The results by the means of fluorescence spectroscopy and CD spectrums, suggested that due to its decreased hydrophobicity rhFGF-2 is not deposited as an inclusion body. The mitogenic activity of the expressed rhFGF-2(M) on 3T3 fibroblasts was shown to be 10-fold more than the expressed rhFGF-2(W) of which the biological activity was a little less than that of the standard rhbFGF(W), indicating that the increased biological activity was due to the change of its secondary structure, dimerization and affinity binding to FGF receptor (FGFR).
Resumo:
The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin-or light-induced expression of marker genes, we showed that auxininduced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.
Resumo:
一.棕色固氮菌突变种UW45、缺失nifH(DJ54)和缺失nifE(DJ35)突变种的钼铁蛋白的纯化、特性鉴定及结晶研究 棕色固氮菌突变种UW45的菌体破碎后,所得粗提物经两次DEAE 52柱层析后得到部分纯的nifB- MoFe蛋白和Fe蛋白。再经Sephacryl S-300和 DEAE柱的进一步纯化,便使nifB- MoFe蛋白基本达到SDS凝胶电泳纯。SDS-PAGE结果表明,nifB- MoFe蛋白具有与野生型棕色固氮菌(OP)MoFe蛋白相同的亚基种类和组成。此粗提物可为用NMF抽提的 OP MoFe蛋白的FeMoco激活,所得Fe蛋白具有与OP Fe蛋白相似的互补活性,可使OP MoFe的比活性达到2192 nmol C2H2/min/mg蛋白。FeMoco可使无互补活性的 nifB- MoFe蛋白与nifB- Fe蛋白组成具有可观放氢活性的固氮酶,使FeMoco显出的比活性接近文献报道的还原乙炔的最高值。对nifB- MoFe蛋白的结晶及晶体生长进行了的研究,初步探讨了结晶溶液各组分的种类和浓度、结晶方法和实验操作等与能否出现晶体及晶体的数目、大小、质量、形状和出晶时间等的相互关系。在结晶实验时,一次就得到了国内外尚未报道的该蛋白的短斜四棱柱的棕色晶体。目前所得的最大的晶体的二维边长都为0.1mm。初步结果表明,这种晶体可能就是nifB- MoFe蛋白的晶体。 从棕色固氮菌突变种DJ54中得到了ΔnifH MoFe蛋白;并参与了棕色固氮菌突变种DJ35的ΔnifE MoFe蛋白的分离纯化,所用方法与nifB- MoFe蛋白的分离纯化相似。对这两种突变种蛋白的特性和结晶进行了初步研究。在结晶实验时,也是一次就得到了国内外尚未报道的ΔnifH MoFe蛋白和ΔnifEMoFe蛋白的晶体。 二.新型固氮酶MnFe蛋白和CrFe蛋白的特性与结晶研究 在已有的工作基础上,分离纯化了几批MnFe蛋白和CrFe蛋白,并用部分纯的nifB- Fe蛋白进行活性互补,分别测定了MnFe蛋白和CrFe蛋白的底物还原活性。不断优化MnFe蛋白和CrFe蛋白晶体生长条件,获得了晶质良好的MnFe蛋白和CrFe蛋白的较大晶体。 在2001年的“神舟2号”飞船搭载实验中,MnFe蛋白的出晶率达到100%,所获得的晶体也比地面对照略厚些。继续进行MnFe蛋白和CrFe蛋白的空间计划的地面匹配实验,以满足对蛋白质样品的要求,以保证宇宙飞船“神舟3号”的蛋白质搭载实验获得更好的结果。
Resumo:
The gene-mutation-cancer hypothesis holds that mutated cellular protooncogenes, such as point-mutated proto-ras, “play a dominant part in cancer,” because they are sufficient to transform transfected mouse cell lines in vitro [Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York)]. However, in cells transformed in vitro mutated human ras genes are expressed more than 100-fold than in the cancers from which they are isolated. In view of the discrepancy between the very low levels of ras transcription in cancers and the very high levels in cells transformed in vitro, we have investigated the minimal level of human ras expression for transformation in vitro. Using point-mutated human ras genes recombined with different promoters from either human metallothionein-IIA or human fibronectin or from retroviruses we found dominant in vitro transformation of the mouse C3H cell line only with ras genes linked to viral promoters. These ras genes were expressed more than 120-fold higher than are native ras genes of C3H cells. The copy number of transfected ras genes ranged from 2–6 in our system. In addition, nondominant transformation was observed in a small percentage (2–7%) of C3H cells transfected with ras genes that are expressed less than 20 times higher than native C3H ras genes. Because over 90% of cells expressing ras at this moderately enhanced level were untransformed, transformation must follow either a nondominant ras mechanism or a non-ras mechanism. We conclude that the mutated, but normally expressed, ras genes found in human and animal cancers are not likely to “play a dominant part in cancer.” The conclusion that mutated ras genes are not sufficient or dominant for cancer is directly supported by recent discoveries of mutated ras in normal animals, and in benign human tissue, “which has little potential to progress” [Jen, J., Powell, S. M., Papadopoulos, N., Smith, K. J., Hamilton, S. R., Vogelstein, B. & Kinzler, K. W. (1994) Cancer Res. 54, 5523–5526]. Even the view that mutated ras is necessary for cancer is hard to reconcile with (i) otherwise indistinguishable cancers with and without ras mutations, (ii) metastases of the same human cancers with and without ras mutations, (iii) retroviral ras genes that are oncogenic without point mutations, and (iv) human tumor cells having spontaneously lost ras mutation but not tumorigencity.
Resumo:
Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^
Resumo:
Extracellular superoxide dismutase (EC-SOD) is a secreted Cu and Zn-containing glycoprotein. While EC-SOD from most mammals is tetrameric and has a high affinity for heparin and heparan sulfate, rat EC-SOD has a low affinity for heparin, does not bind to heparan sulfate in vivo, and is apparently dimeric. To examine the molecular basis of the deviant physical properties of rat EC-SOD, the cDNAs of the rat and mouse EC-SODs were isolated and the deduced amino acid sequences were compared with that of human EC-SOD. Comparison of the sequences offered no obvious explanation of the differences. Analysis of a series of chimeric and point mutated EC-SODs showed that the N-terminal region contributes to the oligomeric state of the EC-SODs, and that a single amino acid, a valine (human amino acid position 24), is essential for the tetramerization. This residue is replaced by an aspartate in the rat. Rat EC-SOD carrying an Asp --> Val mutation is tetrameric and has a high heparin affinity, while mouse EC-SOD with a Val --> Asp mutation is dimeric and has lost its high heparin affinity. Thus, the rat EC-SOD dimer is converted to a tetramer by the exchange of a single amino acid. Furthermore, the cooperative action of four heparin-binding domains is necessary for high heparin affinity. These results also suggest that tetrameric EC-SODs are not symmetrical tetrahedrons, but composed of two interacting dimers, further supporting an evolutionary relationship with the dimeric cytosolic Cu and Zn-containing SODs.
Resumo:
Immunization of mice with rat type II collagen (CII), a cartilage-specific protein, leads to development of collagen-induced arthritis (CIA), a model for rheumatoid arthritis. To define the interaction between the immune system and cartilage, we produced two sets of transgenic mice. In the first we point mutated the mouse CII gene to express an earlier defined T-cell epitope, CII-(256-270), present in rat CII. In the second we mutated the mouse type I collagen gene to express the same T-cell epitope. The mice with mutated type I collagen showed no T-cell reactivity to rat CII and were resistant to CIA. Thus, the CII-(256-270) epitope is immunodominant and critical for development of CIA. In contrast, the mice with mutated CII had an intact B-cell response and had T cells which could produce gamma interferon, but not proliferate, in response to CII. They developed CIA, albeit with a reduced incidence. Thus, we conclude that T cells recognize CII derived from endogenous cartilage and are partially tolerized but may still be capable of mediating CIA.
Resumo:
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.
Resumo:
PAWP, a candidate sperm-borne oocyte activating factor, induces oocyte activation and acts upstream of the calcium signalling pathway, however, PAWP’s downstream signalling pathway in oocyte cytoplasm remains to be uncovered. Data from our lab suggested that the interacting partner of PAWP, at least in the frog (Xenopus laevis) model may be YAP, a highly expressed protein in amphibian and mammalian oocytes. Therefore, the objectives of this study were to confirm that PAWP’s predominant binding partner in Xenopus laevis oocyte is YAP; to determine if mammalian oocyte activation is also dependent on PAWP-YAP interaction; and to verify that the PAWP-YAP interaction during oocyte activation is dependent on the WWI domain module. By immunohistochemistry, YAP was localized predominantly in the cytosol of metaphase II-arrested Xenopus laevis oocytes, where presumably the PAWP-YAP interaction occurs. Utilizing Far Western blotting, YAP was identified as the predominant binding partner of PAWP, in metaphase II-arrested frog (Xenopus laevis), swine (Sus scrofa) and mouse (mus musculus) oocytes. The specificity of this interaction was then tested on Far Western blotting of mouse ovarian and oocyte cytosolic extracts, by competition with both wild-type and point-mutated recombinant WWI domains derived from YAP. The removal of GST from the wild-type WWI-GST fusion protein was a requirement for effective blockage of WWI module interaction between PAWP and YAP. As expected, the mutated WWI domain was ineffective in inhibiting the PAWP-YAP interaction. To conclude, this study identified YAP as the predominant binding partner of PAWP in both amphibian and mammalian oocytes, and showed this interaction is dependent on the WWI modular interaction. The results allow us to test the functional relevance of this WWI modular interaction during oocyte activation in vivo, in the future.
Resumo:
A mutant of Erythrina corallodendron lectin was generated with the aim of enhancing its affinity for N-acetylgalactosamine. A tyrosine residue close to the binding site of the lectin was mutated to a glycine in order to facilitate stronger interactions between the acetamido group of the sugar and the lectin which were prevented by the side chain of the tyrosine in the wild-type lectin. The crystal structures of this Y106G mutant lectin in complex with galactose and N-acetylgalactosamine have been determined. A structural rationale has been provided for the differences in the relative binding affinities of the wild-type and mutant lectins towards the two sugars based on the structures. A hydrogen bond between the O6 atom of the sugars and the variable loop of the carbohydrate-binding site of the lectin is lost in the mutant complexes owing to a conformational change in the loop. This loss is compensated by an additional hydrogen bond that is formed between the acetamido group of the sugar and the mutant lectin in the complex with N-acetylgalactosamine, resulting in a higher affinity of the mutant lectin for N-acetylgalactosamine compared with that for galactose, in contrast to the almost equal affinity of the wild-type lectin for the two sugars. The structure of a complex of the mutant with a citrate ion bound at the carbohydrate-binding site that was obtained while attempting to crystallize the complexes with sugars is also presented.
Resumo:
Background: In Virology Journal 2011, 8: 535, Neto et al. described point mutations into Tax-responsive elements (TRE) of the LTR region of HTLV-1 isolates from asymptomatic carriers from Sao Paulo, Brazil, and hypothesized that the presence of the G232A mutation in the TRE-1 increase viral proliferation and consequently the proviral load (PvL), while the A184G mutation in the TRE-2 do not have such effect. Findings: We performed the real-time PCR assay (pol) and sequenced LTR region of HTLV-1 isolates from 24 HIV/HTLV-1-coinfected patients without HTLV-1-associated diseases from the same geographic area. These sequences were classified as belonging to the transcontinental subgroup A of the Cosmopolitan subtype a. The frequency of G232A mutation (16/24, 66.7%) was high as much as 61.8% reported by Neto's in HTLV-1 asymptomatic carriers with high PvL. High frequency (13/24, 54.2%) of double mutations G232A and A184G was also detected in HIV/HTLV-1-coinfected patients. We did not quantify PvL, but comparative analyses of the cycle threshold (Ct) median values of the group of isolates presenting the mutated-types sequences (Ct 33.5, n = 16) versus the group of isolates with the wild-type sequences (Ct 32, n = 8) showed no statistical difference (p = 0.4220). Conclusion: The frequencies of mutated-type sequences in the TRE-1 and TRE-2 motifs were high in HIV/HTLV-1-coinfected patients from Sao Paulo, Brazil. If these LTR point mutations have predictive value for the development of HTLV-1-associated diseases or they correspond to the subtype of virus that circulate in this geographic area has to be determined.
Resumo:
In the post genomic era with the massive production of biological data the understanding of factors affecting protein stability is one of the most important and challenging tasks for highlighting the role of mutations in relation to human maladies. The problem is at the basis of what is referred to as molecular medicine with the underlying idea that pathologies can be detailed at a molecular level. To this purpose scientific efforts focus on characterising mutations that hamper protein functions and by these affect biological processes at the basis of cell physiology. New techniques have been developed with the aim of detailing single nucleotide polymorphisms (SNPs) at large in all the human chromosomes and by this information in specific databases are exponentially increasing. Eventually mutations that can be found at the DNA level, when occurring in transcribed regions may then lead to mutated proteins and this can be a serious medical problem, largely affecting the phenotype. Bioinformatics tools are urgently needed to cope with the flood of genomic data stored in database and in order to analyse the role of SNPs at the protein level. In principle several experimental and theoretical observations are suggesting that protein stability in the solvent-protein space is responsible of the correct protein functioning. Then mutations that are found disease related during DNA analysis are often assumed to perturb protein stability as well. However so far no extensive analysis at the proteome level has investigated whether this is the case. Also computationally methods have been developed to infer whether a mutation is disease related and independently whether it affects protein stability. Therefore whether the perturbation of protein stability is related to what it is routinely referred to as a disease is still a big question mark. In this work we have tried for the first time to explore the relation among mutations at the protein level and their relevance to diseases with a large-scale computational study of the data from different databases. To this aim in the first part of the thesis for each mutation type we have derived two probabilistic indices (for 141 out of 150 possible SNPs): the perturbing index (Pp), which indicates the probability that a given mutation effects protein stability considering all the “in vitro” thermodynamic data available and the disease index (Pd), which indicates the probability of a mutation to be disease related, given all the mutations that have been clinically associated so far. We find with a robust statistics that the two indexes correlate with the exception of all the mutations that are somatic cancer related. By this each mutation of the 150 can be coded by two values that allow a direct comparison with data base information. Furthermore we also implement computational methods that starting from the protein structure is suited to predict the effect of a mutation on protein stability and find that overpasses a set of other predictors performing the same task. The predictor is based on support vector machines and takes as input protein tertiary structures. We show that the predicted data well correlate with the data from the databases. All our efforts therefore add to the SNP annotation process and more importantly found the relationship among protein stability perturbation and the human variome leading to the diseasome.
Resumo:
The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC β and γ subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC α subunit (αS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the αS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that αS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.
Resumo:
The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression.
Resumo:
We have identified an antigen recognized on a human melanoma by autologous cytolytic T lymphocytes. It is encoded by a gene that is expressed in many normal tissues. Remarkably, the sequence coding for the antigenic peptide is located across an exon-intron junction. A point mutation is present in the intron that generates an amino acid change that is essential for the recognition of the peptide by the anti-tumor cytotoxic T lymphocytes. This observation suggests that the T-cell-mediated surveillance of the integrity of the genome may extend to some intronic regions.